
	

	

	 	

						

Computer	
Science	
Revision	
Guide	
Draft	

Hashan	Punchihewa	

1.1	Hardware	
	
1.1.1 Structure	and	function	of	the	processor	
	
Registers	

o Register	-	A	register	is	a	small	area	of	memory	inside	the	CPU	to	store	data,	with	very	
high-speed	access.	

	
o Program	Counter	(PC)	–	A	register	which	stores	the	address	of	the	next	instruction.	It	

is	 incremented	after	being	 read.	 It	 controls	 the	sequence	 in	which	 instructions	are	
executed.	It	is	altered	as	a	result	of	a	“jump”	instruction.	

	
o Accumulator	(ACC)	-	A	register	that	stores	the	results	of	calculations	by	the	CPU.	

	
o Memory	Address	Register	(MAR)	-	A	register	that	stores	the	address	of	the	memory	

location	currently	being	either	read	from	or	written	to.	
	

o Memory	Data	Register	(MDR)	-	A	register	that	stores	the	data	being	either	read	from	
memory	or	written	to	memory.	It	acts	as	a	buffer	between	memory	and	the	CPU.	

	
o Current	 Instruction	 Register	 (CIR)	 -	 A	 register	 that	 stores	 the	 instruction	 to	 be	

executed.	It	splits	instructions	into	two	parts:	the	opcode	and	operand.	It	also	holds	
the	opcode	while	it	is	being	decoded.	If	the	operand	is	an	address	it	is	sent	to	the	MAR,	
if	it	is	a	value	it	is	send	to	the	MDR.	It	may	also	send	an	address	to	the	PC	for	a	“jump”	
instruction.	

	
Components	

o Control	Unit	-	The	control	unit	controls	the	fetch-decode-execute	cycle	and	manages	
the	 execution	 of	 instructions,	 by	 transmitting	 control	 signals	 to	 other	 parts	 of	 the	
computer	system.	It	also	synchronises	actions	using	its	in-built	clock.	

	
o ALU	 -	 The	 ALU	 carries	 out	 arithmetic	 operations	 such	 as	 addition,	 and	 logical	

operations	such	as	greater	than	comparisons.	It	also	acts	as	a	conduit	through	which	
all	input/output	to	the	computer	goes.	

	
Fetch-Decode-Execute	Cycle	

1. The	contents	of	the	program	counter	are	copied	into	the	memory	address	register.	
2. The	current	instruction	is	copied	from	RAM	into	the	memory	data	register.	
3. The	current	instruction	is	copied	from	the	memory	data	register	into	the	current	

instruction	register.	
4. The	program	counter	is	incremented,	such	that	it	points	to	the	next	instruction.	
5. The	instruction	is	decoded.	
6. The	instruction	is	executed.		

	
	

Factors	affecting	the	performance	of	the	CPU	
o Clock	speed	-	The	higher	the	clock	speed,	the	more	fetch-decode-execute	cycles	the	

CPU	can	perform	per	second.	The	more	instructions	can	be	executed	per	second.	The	
less	time	programs	take	to	run.	

	
o Number	 of	 cores	 -	 The	 more	 cores,	 the	 more	 instructions	 the	 CPU	 can	 execute	

concurrently.	Therefore,	more	processes	that	can	be	run	simultaneously.	
	

o Cache	-	The	more	cache	memory,	more	frequently	accessed	data	and	instructions	can	
be	stored	in	the	CPU.	This	means	RAM	needs	to	be	accessed	less	often.	Significant	as	
accessing	cache	is	quicker	than	accessing	RAM.	

	
Exam	Technique	
If	asked	“Describe	how	a	fast	clock	speed	improves	a	processor’s	performance”,	mention	
not	only	that	a	faster	clock	speed	means	more	clock	cycles	per	second,	but	follow	through	
your	argument,	and	mention	that	this	means	there	are	more	instructions	executed	per	
second,	and	therefore,	a	program	takes	less	time	to	run.		
	
	
CPUs	v	GPUs	
CPU	 	 GPU	
MIMD	 SIMD	
Flexible	 Optimised	
Higher	clock-rate	 Lower	clock-rate	
Less	cores	 More	cores	
Complex	instructions	 Simple	instructions	
	
Buses	

o Bus	 –	 A	 medium	 through	 which	 data	 is	 transferred	 between	 components	 in	 a	
computer	system.		

	
o Address	Bus	-	Unidirectional	bus	used	to	transfer	the	address	of	memory	to	be	read	

from	or	written	to,	from	the	processor	to	memory	or	input/output	devices.	
	

o Data	Bus	-	Bidirectional	bus	used	to	transfer	data	between	the	processor	and	
memory	or	input/output	devices.	

	
o Control	Bus	-	Unidirectional	bus	used	to	transmit	control	signals	e.g.	‘read’,	‘write’,	

etc.	from	the	processor	to	memory	or	input/output	devices.		
	
Pipelining	

o Pipelining	-	Where	the	stages	of	a	CPU’s	fetch-decode-execute	cycle	are	carried	out	
at	the	same	time	on	sequential	instructions.	This	means	that	an	instruction	is	fetched,	
at	the	same	time	as	the	previous	one	 is	being	decoded,	and	the	one	before	that	 is	
being	executed.	

	

Advantages	of	Pipelining	 Disadvantages	of	Pipelining	
Although	 instructions	 take	 the	 same	 time,	
the	delay	between	completed	instructions	is	
reduced,	 increasing	 the	 throughput	 of	 the	
processor,	increasing	the	clock	rate.	

Pipelining	only	works	well,	when	a	piece	of	
code	 doesn’t	 contain	 many	 jump	
instructions.	This	 is	as	 the	processor	might	
load	the	incorrect	branch,	in	which	case,	the	
pipeline	has	to	cleared	and	restarted.	

	
Exam	Technique	
If	asked	“Explain	how	pipelining	would	help	a	CPU	execute	the	code	more	quickly”,	then	
refer	to	what	pipelining	does,	give	an	example	and	crucially	mention	whether	the	code	
has	no	jump	instructions.	
	
	
	
Architectures	

o Von	 Neumann	 Architecture	 -	 This	 is	 where	 there	 is	 a	 single	 control	 unit,	 one	
instruction	is	processed	at	a	time	in	a	linear	sequence	in	a	fetch-decode-execute	cycle	
and	programs	are	stored	with	data.	Allows	self-modifying	code.	

	
o Harvard	 Architecture	 -	 Instructions	 and	 data	 are	 stored	 separately	 in	 their	 own	

memories,	and	each	is	accessed	with	a	separate	bus,	meaning	the	CPU	can	fetch	both	
instructions	and	data	simultaneously.	The	memory	for	instructions	may	be	read-only.	
The	size	of	memory	addresses	and	instruction	addresses	may	be	different.	

	
o Contemporary	Architecture	-	Instructions	and	data	are	stored	separately	in	the	CPU	

cache	 and	 there	 are	 separate	 pathways	 to	 the	 different	 types	 of	 data,	 thus	when	
accessing	 data	 from	 cache,	 the	 CPU	 will	 behave	 as	 if	 it	 followed	 pure	 Harvard	
architecture.	But	instructions	and	data	are	stored	together	in	main	memory,	and	there	
is	a	single	data	bus	between	the	CPU	and	main	memory	

	
1.1.2	Types	of	processors	
	
Co-processors	

o Co-processor	–	An	additional	processor	used	to	supplement	the	functions	and	offload	
work	from	the	main	processor.	It	usually	optimised	for	a	specific	purpose	e.g.	maths-
intensive	calculations.	

	
o GPU	 –	 A	 co-processor	 optimised	 for	maths-intensive	 calculations	 and	 highly	 data-

parallel	computation.	An	example	of	SIMD.	Uses	include	processing	polygon	vectors	
for	video	games,	bitcoin	mining	and	machine	learning.	

	
RISC	and	CISC	

o Reduced	Instruction	Set	Computing	(RISC)	-		A	simple	processor	design,	containing	
an	instruction	set	with	a	limited	number	of	instructions,	where	a	single	instruction	
performs	a	single	task,	and	more	complex	tasks	most	be	performed	by	combining	
simple	instructions.	

	
o Complex	Instruction	Set	Computing	(CISC)	–	A	complicated	processor	design,	

containing	an	instruction	set	with	many	instructions,	however	a	single	instruction	
may	take	multiple	clock	cycles.	

	
Features	of	RISC	 Features	of	CISC	
Simpler	hardware	 More	complex	hardware	
Less	heat	 More	heat	
Further	away	from	higher-level	languages	 Closer	to	higher-level	languages	
Longer	 code	 taking	 more	 space	 in	 main	
memory	

Shorter	 code	 taking	 less	 space	 in	 main	
memory	

Compiler	has	to	do	more	work	 Compiler	has	to	do	less	work	
Every	instruction	takes	one	clock	cycle	 Instructions	may	take	more	than	one	clock	

cycle	
Limited	number	of	addressing	modes	 Many	addressing	modes	
Easier	to	carry	out	pipelining	 More	difficult	to	carry	out	pipelining	
	
Parallel	Systems	
	 Single	instruction	 Multiple	instructions		
Scalar	processors	 SISD	(Single	instruction,	

single	data)	
MISD	(Single	instruction,	
multiple	data)	

Array	processors	 SIMD	(Single	instruction,	
multiple	data)	

MIMD	(Multiple	instruction,	
multiple	data)	

	
	
Multi-core	processors	–	Processors	consisting	of	multiple	processing	units,	that	can	each	run	
different	instructions	simultaneously.	(MIMD).	
	
Array	processor	(or	vector	processor)	–	A	processor	that	can	perform	the	same	instruction	
on	multiple	pieces	of	data	simultaneously.	(SIMD).	
	
1.1.3	Input	and	Output	

o Input	Device	-	Hardware	used	by	a	user	to	put	data	into	a	computer	system.	
	

o Output	Device	-	Hardware	used	to	report	information	from	a	computer	system	to	a	
user.	

	
o Random	Access	Memory	 (RAM)	 -	Volatile	 form	of	 computer	memory	 to	 store	 the	

running	operating	system,	applications	and	open	files.	This	means	it	is	erased	when	
the	computer	is	switched	off.	Can	be	modified.	
	

o Read	Only	Memory	 (ROM)	 -	 Non-volatile	 read-only	 form	of	 computer	memory	 to	
store	the	computer’s	boot	sequence.	Data	is	retained	when	the	computer	is	switched	
off.	Cannot	be	modified.	

	

Barcode	Readers	
Barcode	–	A	way	of	storing	data	using	patterns	of	dark	lines	of	different	widths,	pairs	of	which	
store	digits.	Barcodes	typically	have	start	or	stop	codes	so	they	can	be	read	both	ways	and	a	
check	digit	 for	error	checking.	Typically,	a	barcode	reader	uses	a	 laser	or	a	 light	source	to	
obtain	a	reflection	of	the	lines.	
	
Advantages	of	a	Barcode	Reader	 Disadvantage	of	a	Barcode	Reader	
Fast	data	entry	 Barcodes	can	be	damaged	
Accurate	 Can	 be	 difficult	 to	 get	 the	 barcode	 reader	

into	the	required	position	for	larger	items.	
	
Scanners	
Optical	Character	Recognition	(OCR)	–	A	device	that	transfers	handwritten	or	printed	text	to	
editable	 text	 on	 a	 computer	 by	 optically	 scanning	 the	 text	 to	 determine	 the	 shape	 of	
characters.	A	use	would	be	converting	handwritten	documents	into	a	word	processor	file.			
	
Optical	Mark	Recognition	(OMR)	–	A	device	that	recognises	the	presence	of	a	mark	on	a	sheet	
of	 paper	 by	 the	 reflection	 of	 light,	 the	 position	 of	 the	marks	 conveys	 information	 to	 the	
machine.	A	use	would	be	scanning	in	a	multiple-choice	test.	
	
Magnetic	Ink	Character	Recognition	(MICR)	–	A	device	able	to	read	information	written	in	a	
special	 magnetic	 ink,	 which	 is	 also	 human-readable.	 A	 use	 would	 be	 reading	 in	 account	
numbers	on	cheques.	
	
Printers	
Advantages	of	a	Dot	Matrix	Printer	 Disadvantages	of	a	Dot	Matrix	Printer	
Possible	 to	obtain	multiple	copies	by	using	
carbon	paper	

Slow	and	poor	quality	

	 Not	possible	to	print	in	colour	
	
Advantages	of	an	Inkjet	Printer	 Disadvantages	of	an	Inkjet	Printer	
Faster	and	better	quality	than	Dot	Matrix	 Needs	to	change	colour	cartridges	often	
Possible	to	print	in	colour	 Less	copies	a	minute	than	a	laser	printer	
	
Advantages	of	a	Laser	Printer	 Disadvantages	of	a	Laser	Printer	
Faster	than	an	Inkjet	Printer	 Expensive	
Ink	 lasts	 longer	 so	 don’t	 need	 to	 change	
cartridges	as	often	

Bulky	and	heavy	

	
Magnetic	Stripe	Cards	
Magnetic	Stripe	Card	–	A	card	that	stores	data	by	using	the	magnetism	of	a	strip	of	magnetic	
material	on	the	card.	These	are	read	using	magnetic	stripe	readers.	
	
Actuators	
Actuator	–	A	mechanical	device	or	motor,	used	an	output	device	for	those	who	are	visually	
impaired.	

	
Sensors	
These	measure	movement:	

o Gyroscope	–	Sensor	that	measures	changes	in	orientation.	
o Accelerometer	–	Sensor	that	measures	acceleration.	
o Altimeter	–	Sensor	that	measures	altitude.	

	
Storage	
Optical	Storage	–	A	storage	medium	where	data	is	stored	in	a	form	that	can	be	accessed	
through	light.	
	
Optical	Discs	(e.g.	CDs/DVDs/Blu-Rays)	–	A	secondary	storage	medium	consisting	of	a	disc,	
with	data	encoded	onto	it.	A	laser	can	be	used	to	read	data	from	it	and	write	data	to	it.	Bits	
are	represented	through	how	and	whether	light	is	reflected.	
	
Magnetic	Storage	–	A	storage	medium	where	bits	patterns	would	be	represented	by	
different	patterns	of	magnetism.	
	
Hard	Disk	Drive	(HDD)	–	A	secondary	storage	medium,	made	of	a	disk	consisting	of	one	or	
more	platters.	Bits	are	represented	by	magnetised	spots	on	the	platters	that	rotate	at	high	
speeds.	 Platters	 are	 divided	 into	 tracks	 and	 tracks	 into	 sectors.	 A	 disk	 head	which	moves	
radially	 (in/out	 towards	 the	centre	of	 the	platter)	 is	used	 to	write	 the	data	 to	 the	correct	
sector,	as	the	sectors	passes	below	it.		
	
Magnetic	Tape	–	A	serial	access	magnetic	secondary	storage	medium,	consisting	of	plastic	
film,	that	stores	data	through	magnetism.	
	
Flash	Storage	–	A	non-volatile	computer	storage	medium	that	relies	on	no	moving	parts,	and	
instead	stores	data	to	NAND	flash	gates.	
	
Virtual	Storage	
Virtual	Storage	–	Virtual	storage	is	where	multiple	physical	storage	drives	are	pooled	together	
so	 they	 appear	 as	 a	 single	 logical	 storage	 drive.	 Examples	 include	 storage	 area	 networks,	
where	many	physical	drives	are	accessed	as	a	single	logical	drive	across	a	network,	and	cloud	
storage,	where	 cloud	 storage	providers	 sell	 storage	 space	on	what	appears	 to	be	a	 single	
logical	pool,	but	which	spans	many	physical	drives.	
	
Advantages	of	Cloud	Storage	 Disadvantages	of	Cloud	Storage	
Easily	expanded	 You	need	an	internet	connection.	
Easily	transferred	 	
Easily	accessed	 	
	

1.2	Software	
	

1.2.1	Systems	Software	
	

o Operating	System	–	System	software	that	manages	the	hardware	of	a	computer	
system.	

	
Functions	of	an	operating	system	

o Memory	management	
o Processor	scheduling	
o Interrupt	handling	

	
Why	is	scheduling	needed?	

o Process	as	many	jobs	as	possible	in	the	least	amount	of	time.	
o Ensure	jobs	are	processed	fairly.	
o Maximise	the	number	of	interactive	users.	
o Efficient	use	of	processor	time.	

	
Scheduling	
First	Come	First	Served	–	A	scheduling	policy	where	jobs	are	executed	in	the	order	they	enter	
the	ready	queue.	
	
Shortest	Job	First	–	A	scheduling	policy	where	jobs	are	sorted	in	the	ready	queue	in	ascending	
order	of	the	time	required	and	new	jobs	are	added	in	a	way	to	preserve	this	order	
	
Round	Robin	–	A	scheduling	policy	where	each	job	is	given	a	set	amount	of	CPU	time,	and	
after	that	set	amount,	the	job	is	interrupted	and	sent	to	the	back	of	the	ready	queue;	the	next	
job	in	the	queue	then	runs.	
	
Round	robin	cannot	act	as	a	scheduling	policy	on	its	own,	it	must	work	in	combination	with	
another	 policy	 to	 choose	which	 policy	 to	 go	 first.	 For	 example,	 first	 come	 first	 served	 in	
combination	with	round	robin.	Together	they	make	a	scheduling	scheme.	
	
Shortest	Remaining	Time	-	A	scheduling	policy	where	the	job	with	the	smallest	expected	time	
until	completion	is	selected	to	run;	if	a	new	job	is	added	to	the	ready	queue	with	a	smaller	
expected	time	than	the	currently	running	job	then	it	will	take	over.	
	
Multi-Level	Feedback	Queue	–	A	scheduling	policy	where	the	processor	categorises	jobs	into	
different	queues,	with	different	priorities.	Jobs	in	a	queue	of	higher	priority	are	always	chosen	
to	be	executed	over	jobs	in	a	queue	of	lower	priority,	and	the	scheduler	takes	jobs	from	the	
front	of	the	queue.	Jobs	are	usually	inserted	at	highest	priority	queue.	Jobs	that	take	up	the	
entire	time	slice	are	demoted	to	the	next	 lowest	queue.	 Jobs	always	enter	at	 the	tail	of	a	
queue.	The	lowest	queue	uses	round	robin.	In	some	implementations,	when	a	job	blocks	for	
I/O,	the	job	can	be	promoted	to	favour	I/O	bound	jobs.	
	
Why	is	memory	management	needed?	

• Organise	the	use	of	main	memory	by	converting	logical	addresses	to	physical	
addresses	

• Allow	programs	to	share	memory		
• Protect	programs	from	using	the	same	memory	
• Allow	programs	larger	than	main	memory	to	run.	

	
Memory	Management	

o Paging	–	A	memory	management	scheme	used	with	virtual	memory	where	memory	
is	partitioned	into	physical	pages	and	data	are	divided	into	logical	pages.	Logical	pages	
are	 stored	 on	 disk,	 and	 logical	 pages	 are	 assigned	 physical	 pages	 and	 loaded	 into	
memory	as	they	are	needed.	A	page	table	records	which	physical	page	holds	which	
logical	 page.	 Pages	 are	 of	 the	 same	 size.	 Pages	 are	 not	 allocated	 contiguously	 in	
memory.		

	
o Segmentation	–	A	way	of	partitioning	where	data	is	divided	into	segments	which	are	

of	different	sizes.	Segments	are	stored	on	disk,	and	loaded	into	memory	as	they	are	
needed.	 Segments	 can	 represent	 complete	 programs,	 that	 can	 be	 executed	
separately.	

	
Programmers	choose	the	segments,	but	not	pages.	
	

o Virtual	Memory	–	Where	an	area	of	the	secondary	storage	is	used	to	supplement	main	
memory,	when	main	memory	becomes	full.	Pages	or	segments	are	swapped	between	
main	memory	and	secondary	storage.	This	happens	so	that	parts	of	the	program	not	
currently	in	use	may	be	run,	allowing	large	programs	to	run.	

	
o Disk	Thrashing	–	A	situation	which	occurs	when	using	virtual	memory,	where	there	is	

a	very	high	rate	of	disk	accesses,	such	that	more	time	is	spent	swapping	pages	than	
processing	tasks.	

	
BIOS	

o BIOS	–	Software	that	runs	immediately	after	a	computer	starts	up	to	check	that	the	
system	hardware	works,	by	running	a	power-on	self-test	(POST),	and	loads	a	boot	
loader	or	an	operating	system	into	main	memory.	

	
Interrupts	

o Interrupt	–	An	interrupt	is	a	signal	sent	to	the	processor	from	a	device/process	needs	
indicating	it	needs	attention.	Examples	of	interrupts	include	a	power	failure	interrupt,	
a	 system	 clock	 interrupt	 and	 an	 I/O	 interrupt.	 Different	 interrupts	 have	 different	
priorities	based	on	their	importance.	

	
o Why	are	they	used?	

o To	obtain	processor	time	for	a	higher	priority	task.	
o To	indicate	a	device/process	needs	attention.	

o How	a	computer	handles	an	interrupt:	
1. Complete	the	current	fetch-decode-execute	cycle	
2. Check	the	priority	of	the	interrupt	
3. If	it	is	of	a	lower	priority	than	the	current	task,	then	stop.	
4. Push	the	contents	of	the	CPU’s	registers	onto	the	stack	

5. Load	the	relevant	interrupt	service	routine	by	setting	the	program	counter	to	the	
first	instruction	of	the	interrupt	service	routine	

6. After	the	interrupt	service	routine	is	finished,	restore	the	values	of	the	registers,	
by	popping	them	from	the	stack	

7. The	original	process	continues.	
	

o Interrupt	Service	Routine	(ISR)	–	A	procedure	in	an	operating	system	or	device	
driver	which	is	triggered	to	handle	an	interrupt.		

	
o Device	Driver	–	System	software	that	operates	or	communicates	with	a	hardware	

device	attached	to	a	computer.	It	also	provides	a	software	interface	to	the	hardware	
device	and	interrupt	service	routines	for	handling	any	interrupts	from	the	hardware.	

	
Types	of	Operating	Systems	

o Real	Time	Operating	System	–	An	operating	system	that	gives	a	response	within	a	
guaranteed	time	frame.		

	
o Distributed	 Operating	 System	 –	 An	 operating	 system	 that	 runs	 allows	 multiple	

computers,	connected	through	a	network,	to	work	together	on	the	same	problem.	
	

o Embedded	 Operating	 System	 –	 An	 operating	 system	 which	 is	 designed	 for	 an	
embedded	computer	system	with	one	specific	function.		
	

o Multi	User	Operating	System	–	An	operating	system,	which	allows	multiple	users	to	
use	the	system	at	the	same	time.	Each	user	is	allocated	their	own	rights	and	user	files	
are	kept	separate.	

	
o Multi-tasking	Operating	System	–	An	operating	system	is	an	operating	system	that	

only	more	than	one	process	to	run	simultaneously.	This	is	implemented	using	time-
slicing,	where	each	process	is	given	a	fixed	amount	of	processing	time,	being	the	next	
process	 resumes.	 Processor	 is	 so	 fast	 that	 appears	 these	 tasks	 care	 carried	 out	
simultaneously.	

	
Virtual	Machines	
Virtual	Machine	–	A	software	program	that	is	able	to	perform	as	if	it	were	a	separate	
computer	and	execute	code	as	if	it	were	a	separate	computer.	Multiple	virtual	machines	
may	co-exist	on	a	single	“host”	computer	simultaneously.	
	
There	exist	2	types	of	virtual	machines:	
	
System	Virtual	Machine	–	A	virtual	machine	to	emulate	a	whole	operating	system,	within	a	
host	operating	system,	by	executing	its	machine	code	in	a	virtualised	environment.	
	
Process	Virtual	Machine	(or	Application	Virtual	Machine)	–	A	virtual	machine	to	execute	a	
single	application	inside	a	host	OS,	within	a	platform-independent	virtualised	environment.	
Process	Virtual	Machine	will	often	run	intermediate	code	(e.g.	Java	Virtual	Machine),	or	
execute	code	on	behalf	of	an	interpreter	(e.g.	Python).		

	
Intermediate	Code	–	Partially	compiled	code	that	is	not	machine-specific	that	can	be	run	on	
any	computer	with	the	appropriate	virtual	machine.	
	
Note	that	source	code	is	compiled	to	intermediate	code	and	the	intermediate	code	is	either	
interpreted.	
	
1.2.2	Application	Generation	

o Utility	 software	 –	 A	 piece	 of	 software	 that	 performs	 a	 specific	 task	 to	 aid	 the	
maintenance	 and	 upkeep	 of	 a	 computer	 system.	 An	 example	 would	 be	 a	 disk	
defragmenter.	

o Application	Software	–	Software	created	for	to	perform	specific	and	useful	tasks	for	
the	user.		

o System	Software	-	Programs	that	control	the	operation	and	hardware	of	the	computer	
system.	

	
Open	and	Closed	Software	

o Open	 source	 software	 –	 A	 piece	 of	 software	 for	 which	 the	 source	 code	 is	 freely	
available	for	others	to	examine	and	amend.	

	
Advantages	of	Open-Source	Software	 Disadvantages	of	Open-Source	Software	
Likely	to	be	free	 No	guarantee	of	quality	
Custom	modifications	can	be	made	to	the	
source	code	

	

Copies	of	the	source	code	can	be	made	and	
distributed	freely	

	

	
Advantages	of	Closed-Source	Software	 Disadvantages	of	Closed-Source	Software	
Likely	to	be	of	high-quality	 Source	code	cannot	be	modified	
There	is	usually	a	company	who	can	
provide	support	and	fix	bugs		

Likely	to	cost	money	

	 You	cannot	make	copies	or	distribute	the	
software	

	
Compilation	

o Lexical	analysis:	
o Source	code	is	used	as	input.	
o Tokens	are	created	from	individual	symbols	and	from	the	reserved	words	in	the	

programming	language.	
o Variables	are	stored	in	a	symbols	table.	
o Redundant	characters	e.g.	spaces	are	removed.	
o Whitespace	is	also	removed.	
o Error	diagnostics	are	given.	
o Code	is	prepared	for	syntax	analysis	

	
o Syntax	analysis:	

o Label	check,	check	whether	a	procedure	or	variable	you	reference	actually	exists	
o Checks	whether	control	structures	e.g.	loops	are	closed	correctly	
o Check	if	variables	have	been	assigned	illegal	values	
o Does	BIDMAS	

	
o Semantic	analysis:	

o Makes	sure	a	variable	is	declared	before	it	is	used	
o Type	checking	

	
Syntax	and	semantic	analysis	both	add	more	information	to	the	symbols	table.	
	

o Code	generation:	
o Produces	machine	code.		
o There	are	several	instructions	for	each	high-level	language	statement.	All	variables	

are	given	addresses.		
o Code	optimisation	is	where	code	is	made	as	efficient	as	possible	e.g.	by	replacing	

redundant	instructions.		
o This	 is	 to	 remove	 the	 number	 of	 instructions,	 so	 the	 size	 of	 the	 executable	 is	

smaller.		
o It	is	also	to	reduce	processing	time,	so	the	program	runs	faster.	

	
o Assembler	-	A	program	that	translates	assembly	code	into	machine	code.	

	
o Compiler	–	A	translator	which	converts	source	code	to	machine	code	to	produce	an	

executable	program.	
	

o Interpreter	–	A	translator	that	translates	one	statement	at	a	time,	then	allows	it	to	
be	rune,	before	moving	onto	the	next	statement.		

	
Compilers	 Interpreters	
Translates	the	whole	program	as	a	unit	and	
creates	an	executable	program	

Translates	one	statement	at	a	time	before	
translating	the	next	

Executable	program	is	architecture	specific	 Reports	one	error	and	its	position	before	
stopping		

May	report	a	number	of	errors	at	once	 Must	be	present	each	time	the	program	is	
run	

Can	optimise	code	to	improve	speed/size	 Code	runs	in	a	virtual	machine	
	 Program	runs	more	slowly	due	to	

translation	
	 Can	run	on	a	variety	of	devices	improving	

portability	
	

o Linker	–	Used	to	compile	pieces	of	code	that	have	already	been	compiled	to	produce	
a	single	executable	file.	It	does	this	by	dealing	with	references	from	the	main	program	
to	other	compiled	modules.	

	
o Loader	–	Copies	the	executable	code	into	primary	memory	ready	for	execution.	

	
o Library	–	A	collection	compiled	sections	of	code	that	can	perform	useful	tasks	that	can	

be	used	within	other	computer	programs.	
	

o Advantages	of	library	programs:	
o Already	been	tested,	so	likely	to	be	error-free	
o Already	been	written,	so	saves	time	
o Having	been	written	it	is	reusable	
o Written	by	experts,	so	code	likely	to	be	more	efficient	

	
1.2.3	Software	Development	
o Waterfall	Model	–	A	sequential	development	 life	cycle,	where	one	stage	 is	completed	

fully	before	moving	onto	the	next	stage.	There	is	a	heavy	emphasis	on	planning.	If	you	
have	to	go	back	to	a	previous	stage,	you	have	to	repeat	all	stages	after	that.	Stages	of	the	
waterfall	lifecycle:	

o Requirements	
o Analysis	
o Design	
o Implementation	
o Testing	
o Maintenance	

	
Advantages	of	the	Waterfall	Model	 Disadvantages	of	the	Waterfall	Model	
Simple	and	easy	to	manage	 No	space	for	flexibility	
Well	defined	boundaries	 Requirements	cannot	change	
Easy	to	spot	problems	that	might	come	up	 End	user	not	consulted	after	requirements	
	
o Spiral	Model	–	A	risk-driven	development	life	cycle,	where	development	is	conducted	in	

a	 series	of	waterfall	model-based	 iterations.	 These	 iterations	end	with	 a	phase	of	 risk	
analysis.		

	
Advantages	of	the	Spiral	Model	 Disadvantages	of	the	Spiral	Model	
Focussing	on	risk	 Very	slow	
	 Getting	 someone	 who	 can	 do	 risk	

management	properly	is	costly	
	
o Agile	Methodology	–	A	set	of	principles	 for	development	 life	cycles	which	focusses	on	

adaptive	planning,	early	delivery	and	continuous	 improvement.	Development	occurs	 in	
incremental	 iterations,	 which	 create	 working	 prototypes.	 Development	 can	 adapt	 to	
changing	requirements,	and	feedback	can	be	received	from	clients	early	on.	

	
o Extreme	Programming	–	A	development	life	cycle	where	development	is	conducted	is	a	

series	 of	 short	 cycles	 each	 producing	 a	 new	 release,	 where	 there	 is	 an	 emphasis	 of	
receiving	continuous	feedback	from	the	client.	There	is	also	an	emphasis	of	fixing	bugs	
early	 on	 e.g.	 by	 writing	 unit	 tests	 before	 programming.	 Extreme	 programming	 also	
emphasises	integrating	and	testing	the	system	several	times	a	day.	

	
Advantages	of	the	Extreme	Model	 Disadvantages	of	the	Spiral	Model	
Very	high-quality	code	 Costs	a	lot	
Very	efficient	code	 Requires	regular	contact	with	end	user	
	
o Rapid	 Application	 Development	 –	 A	 development	 life	 cycle	 where	 development	 is	

conducted	 is	 a	 series	of	 short	 cycles	 each	producing	prototypes.	 The	 cycles	 iteratively	
improve	the	prototype	till	it	becomes	the	final	product.	Little	time	is	spent	planning,	as	
opposed	to	programming.		

	
Advantages	of	the	RAD	 Disadvantages	of	the	RAD	
User	is	involved	 Regular	contact	with	client	needed	
Program	very	specific	to	requirements	 Not	very	good	for	massive	projects	
	 Not	very	good	if	you	need	efficient	code	
	
o Rapid	 Application	 Development	 and	 Extreme	 Programming	 are	 in	 essence	 agile	

methodologies.	
	
1.2.4	Types	of	Programming	Languages	

o Class	-	A	template	defining	methods	and	attributes,	that	can	be	instantiated	to	make	
objects.	

	
o Inheritance	-	Where	a	class	known	as	the	child	class	or	subclass	derives	the	methods	

and	attributes	of	a	parent	class	or	superclass.	The	subclass	may	override	some	of	these	
methods	and	attributes,	and	define	its	own	additional	attributes	and	methods.	

	
o Assembly	language	-	A	programming	language	that	is	closely	related	to	the	specific	

machine	architecture,	using	mnemonics	for	instructions,	and	labels	to	allow	jumping	
to	other	instructions.	Each	instruction	is	translated	into	one	machine	code	instruction.	

	
o Procedural	programming	–	A	programming	paradigm	where	the	program	consists	of	

a	 series	of	 instructions	 that	 tell	 the	 computer	what	 to	do	 to	 solve	 the	problem.	 It	
consists	of	sequence,	selection,	iteration	and	recursion.	Code	is	written	in	blocks	are	
procedures	that	can	be	called	at	any	point	in	a	program’s	execution.	

	
o Object-oriented	 programming	 –	 A	 programming	 paradigm	 where	 details	 of	 the	

implementation	 are	 abstracted	 away	 using	 structures	 called	 classes,	 that	 can	 be	
reused,	to	reduce	the	amount	of	code	and	make	programs	easy	to	maintain.	

	
o Declarative	programming	–	A	programming	paradigm	where	you	write	a	statement	

describing	the	problem	you	want	to	be	solved,	but	the	language	implementation	will	
decide	how	to	solve	it.	

	
o Logic	programming	–	A	programming	paradigm	is	where	there	is	a	set	of	facts	and	a	

set	of	rules,	that	are	used	to	perform	computation.	
	

o Functional	programming	–	A	programming	paradigm	that	treats	computation	as	the	
evaluation	of	mathematical	functions	which	accept	input	and	return	output.	

	
Polymorphism	–	Where	different	subclasses	of	a	superclass	have	different	implementations	
of	the	same	method.	
	
Encapsulation	–	Where	attributes	of	a	class	are	declared	as	private,	so	they	can	only	be	
accessed	and	modified	through	methods.	
	
LMC	Assembly	
Mnemonic	 Instruction	
ADD	 Add	
SUB	 Subtract	
STA	 Store	
LDA	 Load	
BRA	 Branch	always	
BRZ	 Branch	if	zero	
BRP	 Branch	if	positive	
INP	 Input	
OUT	 Output	
HLT	 Halt	program	
DAT	 Data	location	
	
Modes	of	Addressing	Memory	

o Immediate	Addressing	–	The	operand	is	the	actual	value	to	be	operated	on.	
o Direct	Addressing	–	The	operand	holds	the	memory	address	of	the	value	to	be	

operated	on.	
o Indirect	Addressing	–	The	operand	is	the	location	(typically	a	register)	of	the	

memory	address	of	the	data	to	be	operated	on.	
o Indexed	Addressing	–	The	location	of	the	data	to	be	operated	on	is	the	contents	of	

the	index	register	added	to	some	constant	value.		
	
An	advantage	of	indirect	addressing	is	that	you	can	access	more	memory.	Indexed	addressing	
is	used	when	manipulating	arrays.	
	 	

1.3	Data	
	
1.3.1	Compression,	Encryption	and	Hashing	

o Lossy	Compression	 -	An	algorithm	that	 reduces	 the	 file	 size	 to	 represent	data,	but	
accuracy	with	which	it	represents	the	data	is	lost	in	the	process.	

	
o Lossless	Compression	-	An	algorithm	that	reduces	the	file	size	to	represent	data,	such	

that	the	original	data	can	be	recovered	without	any	loss	in	quality.	
	

o Run-length	encoding	–	A	 lossless	compression	algorithm	where	data	 is	 stored	as	a	
piece	of	data,	e.g.	a	pixel	in	an	image,	followed	by	how	many	times	it	is	repeated.	This	
saves	space	when	applied	to	files	with	long	runs	of	the	same	item	of	data.	

	
o Dictionary	coding	–	A	lossless	compression	algorithm	where	data	is	encoded	using	a	

dictionary	that	stores	sets	of	strings	that	can	be	found	in	the	data,	the	strings	in	the	
data	are	substituted	with	a	reference	to	the	position	of	the	string	in	the	dictionary.	

	
o Encryption	–	Where	data	 is	 transformed	 from	one	 form,	 the	plaintext,	 to	 another	

form,	the	ciphertext	to	prevent	unauthorised	third	parties	being	able	to	understand	
it.	 The	 algorithm	 used	 to	 perform	 the	 encryption	 is	 called	 the	 cipher,	 and	 secret	
information	to	encode	it	is	called	the	key.	

	
o Symmetric	encryption	–	Encryption	where	the	same	key	can	be	used	to	encrypt	and	

decrypt	the	data.	
	

o Asymmetric	encryption	–	Encryption	where	two	different	keys	are	used.	A	public	key,	
which	is	made	public,	is	used	to	encrypt	data	to	send	to	the	person	who	produced	the	
keys.	 The	private	 key,	which	 is	 kept	 secret	 by	 this	 person,	 is	 used	 to	decrypt	 data	
encrypted	using	the	public	key.	

	
o Hashing	–	A	hashing	function	provides	a	mapping	between	an	arbitrary	length	input	

to	data	of	a	fixed	size.	It	 is	one-way,	as	there	is	no	way	to	obtain	the	original	 input	
from	the	hash.	Uses	of	hashing	 include	hash	tables,	and	storing	and	authenticating	
people’s	passwords.	

	
1.3.2	Databases	
	

o Database	–	A	persistent	store	of	data.	
	

o Flat-File	Database	–	A	database	where	data	is	stored	as	a	single	table	sequentially	in	
a	file	with	no	structured	relationships.	

	
o Relational	Database	–	A	database	where	data	is	stored	across	multiple	tables,	with	

structured	relationships	between	tables.	
	

o Table	–	A	collection	of	records.	

	
o Record	–	All	the	data	stored	about	a	single	entity.	

	
o Field	(also	an	attribute)	–	A	single	piece	of	information	about	a	record.	

	
o Primary	Key	–	An	attribute	that	uniquely	identifies	every	single	record	in	a	table.	

	
o Foreign	 Key	–	 A	 non-primary	 key	 attribute	 in	 one	 table	 that	 stores	 values	 from	 a	

primary	key	attribute	of	another	table,	thus	creating	a	relationship	between	the	two	
tables.	

	
o Secondary	Key	–		A	field	whose	data	is	stored	in	an	index	to	allow	fast	queries	involving	

the	field.	
	
Advantages	of	a	Relational	Database	

• Reduces	data	redundancy	
• Improves	data	consistency	
• Easier	to	change	data	
• Easier	to	add	data	
• Different	data	access	levels	of	data	

	
Advantages	of	a	Flat	File	Database	

• Simple	and	easy	to	manage	
	
Data	Definition	Language	(DDL)	–	Commands	for	defining	the	structure	of	a	database	e.g.	
creating/removing/modifying	tables	and	columns	
	
Data	Manipulation	Language	(DML)	–	Commands	for	manipulating	data	within	a	database	
e.g.	inserting/removing/modifying/querying	rows	in	a	table	
	
Data	Dictionary	–	A	file	defining	the	structure	of	a	database	e.g.	what	tables	there	are,	what	
columns	are	in	each	table,	the	data	type	of	each	column.	
	
Database	Management	System	(DBMS)	–	A	computer	program	to	interact	with	and	manage	
a	database	e.g.	running	queries,	generating	reports,	changing	schemata,	inserting	data,	
creating	forms.		
	
	
	
One	to	one	relationship:	

	
One	to	many	relationship:	

Employee	 Pension	

	
	
Many	to	many	relationship:	

	
Many	to	many	relationships	have	to	be	stored	using	an	associative	table,	that	contains	the	
two	entities	as	foreign	keys.	
	
Normalisation	
Normalisation	-	The	process	of	analysing	how	to	make	databases	more	efficient	by	using	
separate	tables	to	reduce	redundant	data.	

Advantages	of	Normalisation
No	redundant	data,	database	is	smaller	in	size
Smaller	database,	so	queries	run	faster
No	redundant	data,	means	there	is	likely	to	be	better	data	integrity

o Unnormalised	Form	–	The	table	contains	repeating	groups	of	data.	

o First	Normal	Form	–	The	table	contains	no	repeating	groups	of	data.	For	instance,	in	

a	single	field	you	cannot	have	stored	4	telephone	numbers,	separated	by	a	comma.	
Each	telephone	number	should	be	stored	in	its	own	record.	If	records	are	split	 into	
multiple	records	due	to	attributes	containing	repeating	groups	of	data,	then	the	new	
primary	key	 is	a	composite	key	consisting	of	the	original	primary	key	field,	and	the	
attributes,	that	contained	the	repeating	groups.	

	
o Second	Normal	Form	–	There	are	no	partial	key	dependencies,	i.e.	there	is	no	attribute	

that	only	depends	on	part	of	the	primary	key.	If	this	is	the	case,	then	the	fields	that	
only	depend	on	part	of	the	primary	key,	should	be	moved	into	their	own	table,	where	
the	primary	key	is	the	part	of	the	original	key	that	they	depend	on.	Then,	a	foreign	key	
needs	to	be	added	to	the	original	table,	in	place	of	part	of	the	primary	key.	

	
o Third	Normal	Form	–	There	are	no	non-key	dependencies,	i.e.	there	are	no	fields	that	

depend	on	an	 item	of	data	that	 is	not	the	primary	key.	 If	this	does	occur,	then	the	
fields	should	be	moved	into	their	own	table,	where	the	field	they	depend	on	becomes	
the	primary	key.	Then	a	foreign	key	needs	to	be	added	to	their	original	table,	in	place	
of	the	dependent	key	that	was	moved	to	its	own	table.		

	
Query	 Meaning	
SELECT * FROM people Get	all	the	information	about	everybody	

stored	in	the	database.	

Company	 Employee	

Company	 Customer	

SELECT name FROM people	 Get	the	name	of	everybody	stored	in	the	
database.	

SELECT name, age FROM people Get	the	name	and	age	of	everybody	stored	
in	the	database.	

SELECT * FROM people WHERE name
= “Hashan”

Get	all	the	information	about	everybody	
called	Hashan	in	the	database.	

SELECT * FROM people WHERE name
= “Hashan” AND age = 18

Get	all	the	information	about	every	called	
Hashan	and	whose	age	is	18.	

SELECT * FROM people WHERE age >
10 AND age < 60

Get	all	the	information	about	people	whose	
age	is	between	(exclusive)	10	and	60.	

SELECT * FROM people WHERE age
>= 10 AND age <= 60

Get	all	the	information	about	people	whose	
age	is	between	(inclusive)	10	and	60.	

SELECT * FROM people WHERE age
!= 18 OR name = “Hashan”

Get	all	the	information	about	everybody	
called	Hashan	or	whose	age	is	not	18.	

SELECT * FROM people WHERE age
!= 18 OR name LIKE “%Hashan”

Get	all	the	information	about	everybody	
whose	age	is	not	18	or	whose	name	ends	
with	“Hashan”.	

SELECT * FROM people WHERE age
!= 18 OR name LIKE “Hash%an”

Get	all	the	information	about	everybody	
whose	age	is	not	18	or	whose	name	begins	
with	“Hash”	and	ends	with	“an”.	

SELECT * FROM people WHERE
pet_name IN (SELECT name FROM
dog)

Select	every	field	of	every	record	from	a	
table	called	people,	where	the	value	of	
pet_name	is	an	item	that	also	happens	to	
be	a	name	of	a	record	in	dog.	

SELECT * FROM people WHERE
pet_name IN (SELECT name FROM
dog WHERE breed = “Rottweiler”)

Select	every	field	of	every	record	from	a	
table	called	people,	where	the	value	of	
pet_name	is	an	item	that	also	happens	to	
be	a	name	of	a	record	in	dog	where	the	
breed	is	“Rottweiler”.	

SELECT people.name, pet.breed
FROM people JOIN pet ON
people.pet_name = pet.name

Selects	the	field’s	name	from	people	and	
breed	from	pet,	joining	the	records	
together	when	the	value	of	pet_name	from	
a	record	from	people	has	the	same	value	as	
the	value	of	name	from	a	record	from	pet.	

SELECT people.name, pet.breed
FROM people JOIN pet ON
people.pet_name = pet.name WHERE
name = “Hashan”

Selects	the	field’s	name	from	people	and	
breed	from	pet,	joining	the	records	
together	when	the	value	of	pet_name	from	
a	record	from	people	has	the	same	value	as	
the	value	of	name	from	a	record	from	pet.	
The	name	also	has	to	be	“Hashan”.	

DELETE FROM people Delete	every	record	that	exists	in	table	
people.	

DELETE FROM people WHERE name =
“Hashan”

Delete	every	record	that	exists	in	table,	
where	name	is	“Hashan”.	

INSERT INTO people (name, age)
VALUES (“Hashan”, 18)

Insert	a	record	into	the	table	people,	with	
name	assigned	to	“Hashan”	and	age	to	18.	

INSERT INTO people (name) VALUES
(“Hashan”)

Insert	a	record	into	the	table	people,	with	
name	assigned	to	“Hashan”.	

DROP TABLE people Completely	delete	a	table	including	the	
data	it	contains.	

	
	

o Data	Integrity	–	This	is	where	data	is	stored	under	the	constraints	of	the	database,	
e.g.	the	values	of	records	are	the	correct	type	and	validation	rules	are	adhered	to.	

o Referential	Integrity	–	This	is	where	every	piece	of	data	stored	under	a	foreign	key	
refers	to	another	row	that	exists	in	another	table.	

	
Transactions,	ACID,	Record	Locking,	Redundancy	
Operations	to	modify	a	database	are	carried	out	in	transactions.	Transactions	is	one	or	more	
changes	that	are	to	be	made	to	a	database.	A	single	transaction	can	contain	changes	to	
different	tables.	They	must	adhere	to	the	4	properties:	
	

o Atomicity	–	A	transaction	is	processed	in	its	entirety	or	not	at	all.	This	means	every	
change	has	to	made,	or	none	of	the	changes	are	made.	

o Consistency	–	No	transaction	can	violate	any	of	the	validation	rules	for	maintaining	
the	integrity	of	the	database,	this	includes	referential	integrity.	

o Isolation	–	The	transaction	is	carried	out	independently,	and	each	transaction	should	
not	affect	other	transactions.	

o Durability	–	Once	a	transaction	has	been	committed,	it	remains	so,	even	in	the	event	
of	a	power	cut.	

	
o Record	 Locking	 –	 A	 technique	 of	 preventing	 simultaneous	 access	 to	 objects	 in	 a	

database	to	prevent	inconsistent	results.	This	is	where	a	record	is	locked	when	it	is	to	
be	 updated,	 so	 that	 nobody	 else	 can	 access	 the	 same	 record,	 until	 the	 update	 is	
finished.	

	
o Redundancy	–	This	is	where	two	or	more	identical	database	systems	are	maintained	

in	different	geographical	locations,	so	that	every	transaction	is	applied	to	all	database	
systems.	In	the	event	of	one	system	failing,	other	systems	can	take	over.	

	
1.3.3	Networks	
	

o Local	Area	Network	–	A	group	of	computers	linked	together	over	a	small	geographical	
area.	

o Wide	 Area	 Network	A	 group	 of	 computers	 over	 geographically	 remote	 distances,	
usually	connected	through	third-party	communication	links.	

	
Characteristics	of	LAN	

- Small	geographical	area	
- More	secure	
- Hard-wired	or	short-range	wireless	

	
Characteristics	of	WAN	

- Data	vulnerable	to	interception	
- Geographically	remote	distances		
- Tends	to	use	third-party	communication	links	

	
Client-Server	Network	-	One	or	more	nodes	act	as	a	central	server	which	centrally	stores	data	
and	manages	the	network,	while	the	rest	are	clients,	which	rely	on	the	server.	
	
Peer-to-Peer	Network	 -	No	node	 is	 in	overall	 control,	each	can	share	data	and	connected	
peripherals	to	others	based	on	a	set	of	access	rights.	
	
Advantages	of	Client-Server	 Disadvantages	of	Client-Server	
Files	 are	 stored	 in	 a	 central	 location,	 and	
different	users	can	be	given	different	access	
rights	

A	dedicated	network	manager	is	needed	

Peripherals,	 backups	 and	 security	 can	 be	
controlled	centrally	

Servers	are	expensive	

Software	 licenses	 and	 installation	 can	 be	
controlled	centrally	

If	 the	 servers	 fails,	 none	of	 the	 clients	will	
function	

	
Advantages	of	Peer-to-Peer	 Disadvantages	of	Peer-to-Peer	
Easier	to	setup	than	Client-Server	 Files	 are	 disparate,	 stored	 across	 multiple	

machines	making	them	difficult	to	locate	
If	one	node	fails,	other	noes	will	still	function	 Backups	 and	 security	 cannot	 be	 controlled	

centrally,	 so	 it	 is	 the	 responsibility	of	 each	
user	to	properly	backup	and	secure	his/her	
computer	

No	need	for	a	dedicated	network	manager	
or	additional	nodes,	to	act	as	a	server	

	

	
Protocols	
Protocol	–	A	set	of	rules	that	govern	communication	in	a	network.	
	
The	layers	of	the	TCP/IP	model	can	split	into	the	following:	

• Application	Layer	(e.g.	HTTP)	–	Encodes	the	data	being	sent.	
• Transport	Layer	(e.g.	TCP)	–	Splits	the	data	up	into	packets,	assigns	packet	headers	

and	adds	port	number.	
• Network	Layer	(e.g.	IP)	–	Adds	the	sender’s	and	the	recipient’s	IP	address	
• Network	Access	Layer	(e.g.	Ethernet	or	Wi-Fi)	–	Adds	MAC	address	information	to	

specify	which	hardware	device	the	message	comes	from	and	is	going	to.	
	
IP	Address	–	An	address	assigned	to	devices	to	indicate	where	a	packet	of	data	is	to	be	sent	
or	has	been	sent	 from.	Routers	are	assigned	 IP	addresses	 from	Internet	Service	Providers.	
These	are	public	IP	addresses	and	are	unique	across	the	internet.	Routers	provide	private	IP	
addresses	 to	 computers	 within	 a	 network.	 Private	 IP	 addresses	 are	 only	 unique	within	 a	
network.	
	

Features	of	the	IP	Protocol	
• Adding	the	sender’s	and	the	recipient’s	IP	address	

	
Features	of	the	TCP	Protocol	

• Allocation	of	port	numbers	
• Splitting	data	into	packets	
• Retransmitting	packets	if	they	were	lost	in	transmit	
• Checking	data	whether	data	has	been	changed	during	 transmit,	and	attempting	 to	

correct	it	if	it	has	(i.e.	error	correction)	
	
Features	of	the	Data	Link	Layer	

• Adding	the	MAC	address	
	
Advantages	of	protocol	layering	

• Higher	level	protocols	do	not	have	to	worry	about	the	implementation	details	of	lower	
level	protocols	and	vice	versa	

• Higher	level	protocols	can	often	work	on	top	of	multiple	lower	level	protocols	e.g.	IP	
packets	 can	 be	 sent	 on	 Ethernet,	which	 requires	 IP	 to	 run	 on	 top	 of	 the	 Ethernet	
protocol,	or	IP	can	be	sent	on	Wi-Fi,	wherein	IP	runs	on	top	of	the	Wi-Fi	protocol.	

• Able	to	code	for	specific	layers.	
	
Disadvantages	of	protocol	layering	

• Overhead	due	to	a	message	having	to	pass	through	multiple	layers,	increasing	packet	
sizes.	

	
MAC	(Machine	Address	Code)	address	 -	A	unique	hardware	identifier	for	devices	that	can	
connect	to	a	network,	consisting	of	48	bits	of	data.	A	MAC	address	is	usually	built	into	the	NIC	
of	a	computer.	No	two	devices	will	ever	have	the	same	MAC	address.	
	
URL	stands	for	Uniform	Resource	Locator.	In	a	web	address,	http	is	the	protocol.	www	is	the	
host.	www.bbc.co.uk	is	a	fully	qualified	domain	name.	uk	is	the	top-level	domain	name.	The	
path	is	/news.		
	
Network	Hardware	
Hub	-	A	hardware	device	that	connects	together	multiple	nodes	in	a	network.	A	hub	
broadcasts	all	the	data	received	from	one	port	to	all	the	other	ports,	regardless	of	to	whom	
the	packets	are	addressed.	This	uses	up	a	lot	of	unnecessary	bandwidth.	
	
Bridge	-	A	hardware	device	that	connects	together	two	networks,	such	that	they	act	as	a	
one	larger	network.	A	bridge	checks	to	see	if	the	recipient	of	a	message	is	on	the	other	
network	before	relaying	a	packet.	
	
Switch	-	A	hardware	device	that	connects	together	multiple	nodes	in	a	network,	but	rather	
than	broadcasting	all	data,	checks	the	MAC	address	of	the	recipient	and	sends	it	to	the	
correct	node,	as	opposed	to	all	the	nodes.	
	

Modem	-	A	hardware	device	that	converts	to	and	from	digital	data	that	a	computer	network	
uses	to	and	from	analogue	signals	that	telephone	network	uses.	
	
Wireless	Access	Point	(WAP)	-	A	hardware	device	that	allows	wireless	devices	to	connect	
and	access	the	network	by	relaying	connections	through	to	the	hard-wired	network	the	
WAP	is	connected	to.		
	
Router	-	A	network	device	that	can	form	a	LAN	by	connecting	network-capable	devices	
together,	and	chooses	the	node	to	forward	packets	such	that	packets	follow	the	fastest	
route	possible.	
	
Repeater	-	A	network	device	that	receives	degenerated	signals	and	sends	them	
“regenerated”,	in	order	to	prevent	signals	degenerating	too	much	such	that	they	can	no	
longer	be	understood.	
	
DNS	
Domain	 Name	 System	 –	 The	 system	 by	 which	 human-readable	 domain	 names	 (e.g.	
google.com)	are	converted	into	the	corresponding	IP	addresses.	A	DNS	server	maps	a	domain	
name	 into	 an	 IP	 address.	 If	 it	 cannot	 resolve	 the	 domain	 name,	 it	 recursively	 passes	 the	
request	to	another	DNS	server,	until	the	IP	address	is	found.	
	
Why	is	DNS	used?	

o Because	IPs	are	hard	to	remember.	
o Because	IPs	can	change.	

	
Network	Security	

o Malware	–	A	program	designed	to	disrupt,	damage	or	gain	unauthorised	access	to	a	
computer	system.	

o Firewall	–	A	piece	of	software	or	hardware	that	inspects	packets	against	a	set	of	
preconfigured	rules	called	packet	filters,	to	decide	whether	the	packet	should	be	
allowed	through.	

o Proxy	Server	–	A	proxy	server	intercepts	all	packets	entering	and	leaving	a	network,	
hiding	the	true	network	address	of	the	source	from	the	recipient.	This	enables	privacy.	
A	proxy	can	also	be	used	to	filter	requests	to	control	the	content	that	users	can	access.	
It	can	also	be	used	to	maintain	a	cache	of	commonly	requested	websites	to	save	time.	

o Encryption	can	also	be	used	to	keep	messages	travelling	across	the	internet	secure.	
	
Packet	and	Circuit	Switching	
	
Packet	Switching	 Circuit	Switching	
No	established	route	 Establishes	a	route	along	which	to	send	

packets	for	the	duration	of	the	message	
Packets	are	sent	on	individual	routes	 Packets	all	follow	the	same	route	
Secure	because	impossible	to	intercept	all	
packets	

Because	of	all	packets	follow	the	same	
route,	easy	to	intercept	

Packets	need	to	be	reassembled	 Packets	remain	in	the	correct	order	

Maximises	the	use	of	network	 Ties	up	large	areas	of	the	network	
	
	
	
1.3.4	Web	Technologies	
	
HTML,	CSS	and	JavaScript	
	
Basic	Elements	One	Should	Know:	
Element	 Attributes	
<html> 	
<head>	 	
<title>	 	
<body> 	
<h1> 	
<h2> 	
<h3> 	
<a> href	
<div> 	
<form> 	
<p> 	
 	
 	
 	
<script> name, type=”text”, type=”submit” 	
	
Elements	That	Do	Not	Require	a	Closing	Tag:	
Element	 Attributes	
<link> href, rel, type	
	 src, alt, height, width	
<input>	 	
	
The	 only	 other	 attribute	 that	 one	 needs	 to	 know	 is	 the	 style	 attribute	 for	 all	 applicable	
elements.	This	is	used	for	inline	styles.	Inline	styles	are	bad	because:	

o Create	redundant	code.	
o More	code,	means	loads	slower.	
o Difficult	to	maintain.	

	
External	 styles	 are	where	 they	 are	 rewritten	 in	 a	 different	 file	 and	 linked	with	 a	 link	 tag.	
Advantages	are	the	opposite	of	the	disadvantages	of	inline	styles.	
	
CSS	Properties	That	One	Should	Know:	
Property	
background-color
border-color	
border-style	

border-width
font-family
font-size
height
width
	
One	should	know	how	to	use	CSS	identifiers	with	ids,	classes	and	tag	names	as	well	as	CSS	
named	and	hexadecimal	colours.		
	
One	should	know	how	to	use	the	JavaScript	functions, and.	One	should	also	know	of	the	
innerHTML property	of	elements.	
	
JavaScript	 Description	
document.getElementById	 Method	
document.write	 Method	
alert	 Method	
innerHTML	 Property	of	an	element	
	
Search	Engine	Indexing	
Search	engines	maintain	an	index	of	all	pages	on	the	internet,	which	your	query	is	compared	
to.	Querying	an	 index	 is	designed	to	be	very	 fast.	The	 index	 is	continually	updated	by	 the	
search	engine	indexing	algorithm,	by	removing	pages,	adding	new	ones,	or	updating	the	rank	
of	each	page.	A	spider	is	used	by	the	search	engine	to	crawl	between	pages,	and	index	every	
page	it	finds.	It	checks	meta	tags,	which	contain	data	about	the	webpage,	and	follows	all	of	
the	links	on	a	page	in	order	to	collect	data	about	a	page.	The	more	links	a	page	has,	and	the	
higher	the	quality	of	those	links,	the	higher	ranked	a	page	is	in	the	index,	so	the	easier	it	is	to	
find	with	a	query.	
	
Client-side	and	Server-side	processing	
As	the	name	suggests	client-side	processing	is	where	data	is	processed	on	the	client	in	the	
web	browser,	usually	using	JavaScript.	Server-side	is	where	the	data	is	sent	to	the	server	e.g.	
through	a	HTML	form,	for	processing.		
	
Client-side	processing	 Server-side	processing	
Initial	data	validation	 Further	data	validation	
Can	applies	CSS	styles		 Performs	database	queries	and	updates	
Reduces	the	load	on	the	server	 Performs	complex	calculations	
	 Encodes	data	to	readable	HTML	
Client-side	 validation	 can	 be	 bypassed	 e.g.	 by	 forging	 server-side	 requests,	 so	 server-side	
validation	always	has	to	be	implemented.	So,	if	you	do	implement	client-side	validation,	you	
still	ned	to	implement	server-side	validation.	

1.4 Data	Types	
1.4.1	Data	Types	
o Primitive	data	type	–	A	data	type	built	in	to	a	programming	language.		

	
o One	should	be	aware	of	integers,	floating	point	numbers,	characters,	strings	and	

Booleans.		
	
Positive	Binary	Integers	
All	data	in	a	computer	system	is	stored	as	a	collection	of	0s	and	1s,	known	as	binary.	The	way	
meaningful	data	be	it	numbers	or	characters	are	encoded	is	called	data	representation.	Binary	
can	be	easily	used	to	represent	numbers	as	all	it	is	in	essence	is	a	numerical	system,	except	
with	only	with	the	digits	0	and	1.	The	numerical	system,	humans	have	come	to	naturally	use	
is	called	denary	or	base	10,	as	it	uses	10	digits	(0-9).	Binary	or	base	2	works	similarly	to	denary.	
Like	in	denary,	0	in	binary	represents	0.	Similarly,	1	in	binary	represents	1	in	denary.	However,	
since	2	is	not	a	digit	in	binary,	to	represent	2	in	binary,	10	is	used.		
	
The	same	principle	operates	in	denary,	when	all	the	combinations	of	digits	possible	have	run	
out,	an	additional	column	is	used.	So,	3	in	binary	is	11,	and	after	that,	since	there	cannot	be	a	
12,	to	express	4,	100	is	used.	To	express	5,	101	is	used,	for	6,	110	is	used,	7,	111.	And	then	for	
8,	another	column	must	be	added,	so	we	get	1000.	You	may	have	noticed	it	was	when	we	got	
to	2,	4,	8,	 that	 it	became	necessary	 to	add	another	column.	The	same	continues,	1000	 in	
binary	represents	8,	10000	represents	16,	100000	represents	32.	This	because	they	are	the	
powers	of	2	(21	=	2,	22	=	4,	23	=	8,	24	=	16,	25	=	32,	26	=	64,	etc.).	The	same	happens	in	denary,	
except	rather	than	the	powers	of	2,	it	is	the	powers	of	10	(10,	100,	1000).	
	
In	primary	school,	you	are	likely	to	have	been	taught	to	think	of	numbers	in	terms	of	the	
units,	tens,	hundreds,	thousands,	column,	etc.		
	
Example	
To	write	563	in	denary	columns,	you	would	write:	
	

100s	
(102)	

10s	
(101)	

1s	
(100)	

5	 6	 3	
	
Note	that	(5	*	102)	+	(6	*	101)	+	(3	*	100)	=	563.	
	
The	same	principles	apply	to	binary.	
	
Example	
For	example,	to	convert	the	binary	number	101011	to	denary,	you	would	write	it	out	as	
follows:	

32s	
(25)	

16s	
(24)	

8s	
(23)	

4s	
(22)	

2s	
(21)	

1s	
(20)	

1	 0	 1	 0	 1	 1	
	
Then	you	would	multiply	each	digit	by	its	respective	value,	and	add	up	the	results.	So	here	
you	would	do	(25	*	1)	+	(24	*	0)	+	(23	*	1)	+	(22	*	0)	+	(21	*	1)	+	(20	*	1),	which	equals	43.		
	

In	fact,	since	the	only	digits	in	binary	are	0	and	1,	the	process	all	you	actually	have	to	do	it	
look	for	the	digits	which	are	1s,	and	add	their	respective	values	together,	so	here	all	you	
would	do	is	32	+	8	+	2	+	1,	which	equals	43.	You	may	have	realised	that	a	binary	number	
will	only	be	negative	if	the	final	digit	is	1,	as	the	final	digit	is	the	only	number	with	an	odd	
column	value.	
	
	
In	 the	 exam,	 they	will	 be	 likely	 to	 talk	 about	 8-bit	 binary,	 i.e.	where	 binary	 numbers	 are	
allotted	8	bits	of	space.	If	you	are	given	an	8-bit	binary	number	that	only	uses	less	than	8	digits	
for	example	it	will	have	leading	0s	to	make	up	for	it.		
	
Example	
So,	1011,	would	be	written	as	00001000	for	8-bit	binary.	
	
This	is	what	happens	in	computer	memory	as	well.	Numbers	are	allotted	a	set	number	of	bits,	
and	if	they	use	less	then,	the	bits	which	are	not	used,	are	set	to	0.	This	also	means	in	your	
exam:	 you	will	 have	 to	make	 sure	 that	 if	 you	 are	 giving	 an	 answer,	 you	put	 the	 required	
amount	of	leading	0s.	The	same	principle	applies	to	16-bit	binary	etc.		
	
So,	to	convert	from	a	denary	number	to	8-bit-binary	you	would	draw	out	a	table,	like	before	
with	8	columns	from	27	to	20,	and	you	would	look	at	each	column	value	from	left	to	right,	to	
see	if	it	is	smaller	than	or	equal	to	the	number	in	question.	If	it	is	not,	you	write	0.	If	it	is	you	
subtract	the	column	value	from	the	number	in	question,	and	write	1	in	that	column.		
	
Example	
Let	us	convert	42	into	6-bit	binary.	We	would	draw	out	a	table	from	25	to	20.	
	

32s	
(25)	

16s	
(24)	

8s	
(23)	

4s	
(22)	

2s	
(21)	

1s	
(20)	

	 	 	 	 	 	
	
32	≤	42,	so	we	do	42	–	32	=	10.	And	we	write	1	in	the	32s	column.	
	

32s	
(25)	

16s	
(24)	

8s	
(23)	

4s	
(22)	

2s	
(21)	

1s	
(20)	

1	 	 	 	 	 	
	
However,	16	>	10,	so	we	write	0	in	the	16s	column.	8	≤	10,	so	we	do	10	–	8	=	2.	And	we	
write	1	in	the	8s	column.	2	
	

32s	
(25)	

16s	
(24)	

8s	
(23)	

4s	
(22)	

2s	
(21)	

1s	
(20)	

1	 0	 1	 	 	 	
	
Again	4	>	2,	so	we	would	write	0	in	the	4s	column.	But	2	≤	2,	so	we	would	write	1	in	the	2s	
column.	Then	we	do	2	–	2	=	0.	Then	we	would	write	0	in	the	1s	column.	
	

32s	
(25)	

16s	
(24)	

8s	
(23)	

4s	
(22)	

2s	
(21)	

1s	
(20)	

1	 0	 1	 0	 1	 0	
	

	
Hexadecimal	is	another	numerical	system,	but	with	16	digits:	0-9	make	up	the	first	10	digits,	
and	the	letters	A-F	make	up	the	next	6.	So,	in	hexadecimal	A16	=	1010	and	B16	=	1110,	and	so	
on.	Here	is	a	table	comparing	binary,	denary	and	hexadecimal.	
	

Binary	 Denary	 Hexadecimal	
0000	 0	 0	
0001	 1	 1	
0010	 2	 2	
0011	 3	 3	
0100	 4	 4	
0101	 5	 5	
0110	 6	 6	
0111	 7	 7	
1000	 8	 8	
1001	 9	 9	
1010	 10	 A	
1011	 11	 B	
1100	 12	 C	
1101	 13	 D	
1110	 14	 E	
1111	 15	 F	

	
Because	binary	is	base	2	and	hexadecimal	is	base	16,	and	24	=	16,	a	set	of	4	binary	digits	can	
be	represented	by	1	hexadecimal	digit.	You	can	use	this	to	convert	from	binary	to	hexadecimal	
and	vice	versa	really	easily.	To	convert	from	binary	to	hexadecimal,	draw	the	above	table,	
convert	each	block	of	4	binary	digits	to	its	corresponding	hexadecimal	digit.	To	convert	form	
hexadecimal	to	binary,	convert	each	hexadecimal	digit	to	its	corresponding	block	of	4	binary	
digits.		
	
Converting	from	denary	to	hexadecimal	and	hexadecimal	to	denary	is	easy	as	well,	as	you	can	
use	binary	as	an	intermediary	base.	For	example,	to	convert	from	denary	to	hexadecimal,	go	
from	denary	→	binary	and	binary	→	hexadecimal.
	
Sign	and	Magnitude	
o Sign	and	magnitude	is	a	way	of	representing	integers,	where	the	first	bit	is	a	sign	bit.	If	it	

is	0,	the	integer	is	positive,	otherwise	the	integer	is	negative.		
	
Example	
To	convert	-8	to	8-bit	sign	and	magnitude	binary,	first	write	it	normally,	i.e.	00001000.	
Then,	because	it	is	negative	we	make	the	most	significant	bit	1.	So	we	have	10001000.	

	
o Problems	with	sign	and	magnitude:	

o There	are	2	different	representations	of	0.	
o Addition	and	subtraction	are	more	complicated.	

	
Two’s	Complement	
o In	 two’s	 complement	 the	 leftmost	 bit	 represents	 a	 negated	 version	 of	 what	 it	 would	

normally.	For	instance,	in	the	case	of	8-bit	binary,	this	would	mean	the	leftmost	bit	would	
represent	-128.	

	
Example	
Say	you’re	given	1010,	because	we’re	doing	4-bit	binary,	the	most	significant	bit	is	1,	and	
that	is	worth	-23,	so	it	is	worth	-8.	Then	the	only	other	bit	to	concern	ourselves	with	is	the	
second	from	the	right,	which	is	worth	21,	so	we	do	-23	+	21,	to	get	-6.	
	
o To	negate	a	two’s	complement	number,	invert	the	bits	and	add	one.	
	
Example	
Say	you’re	given	0100	and	you	need	to	negate	it,	first	you	invert	the	bits	to	get	1011.	Then	
you	add	one	to	the	number	to	get	1100.	
	
o To	add	two’s	complement	numbers	together,	you	simply	do	normally	binary	addition.	If	

the	addition	of	 two	positive	numbers	 yields	 a	negative	number,	 then	an	overflow	has	
occurred.	If	the	addition,	of	two	negative	numbers	has	yields	a	positive	number,	then	an	
overflow	has	occurred.	Otherwise	an	overflow	hasn’t	occurred.	

	
Example	
For	instance,	to	add	-3	and	5	using	4-bit	2’s	complement,	first	write	them	out.	
	
To	obtain,	-3	first	negate	3,	which	is	0011.	This	gives	you	1101.		
5	is	just	0101.	
	
Then	simply,	add	1101	+	0101	=	10010.	Notice	that	there	is	an	overflow.	Or	so	it	appears.	
But	none	of	our	rules	have	been	violated.	So,	we	simply	ignore	the	final	bit,	and	we	arrive	
at	0010.	Notice	this	is	2.	Funnily	enough	-3	+	5	is	2.		
	
o To	 subtract	 two’s	 complement	 numbers,	 simply	 negate	 the	 second	 and	 add	 them	

together.	
	
o An	 important	 thing	 to	 bear	 in	mind	 is	 that	 if	 you	 have	 a	 negative	 two’s	 complement	

number,	e.g.	1111,	then	it	is	not	the	same	thing	as	01111.	It	is,	however,	the	same	thing	
as	11111.	The	same	applies	to	two’s	complement	numbers.	0111,	is	not	the	same	thing	
as	111,	but	it	is	the	same	thing	as	00111.	

	
o The	same	applies	the	other	way.	If	you	have	00111,	this	is	clearly	the	same	as	0111.	If	you	

have	1111,	this	is	the	same	as	1.	
	

Example	
Let	us	say	we	want	to	add	11	and	0101,	and	both	of	them	are	already	two’s	complement	
numbers.	Then	we	must	make	11	into	1111.	Then	we	perform	the	addition,	to	get	10100.	
What	 just	 happened?	 An	apparent	overflow!	 But	 because	 none	 of	 our	 two	 rules	were	
violated,	we	simply	ignore	the	new	bit,	to	get	0100.	
	
Two’s	Complement	Floating	Point	Numbers	
o Uses	of	floating	point	numbers	

o To	store	decimal	numbers	
o To	store	very	large	or	very	small	numbers	

	
o Floating	point	numbers	are	represented	using	a	mantissa	followed	by	an	exponent.		
	
o In	floating	point	binary,	the	mantissa	is	a	decimal	where	the	decimal	point	is	after	the	first	

bit.	 Since	 the	 first	bit	before	 the	decimal	point	has	 the	value	20,	 the	 first	bit	after	 the	
decimal	point	has	the	value	2-1,	and	so	on.	

	
Example	
Suppose	our	mantissa	is	0101.	Adding	the	decimal	point	gives	0.101.	Adding	the	value	of	
bits	gives	2-1	+	2-3	which	is	5/8.	So,	5/8	is	the	value	of	the	mantissa.	
	
o The	value	of	the	number	is	the	mantissa	multiplied	by	2	to	the	power	of	the	exponent.	

Note	that	multiplying	by	2,	is	the	equivalent	of	shifting	to	the	left	by	a	certain	number	of	
places.	So,	it	is	just	the	mantissa	shifted	to	the	left	by	the	number	of	times	represented	
by	the	exponent.		

	
Example	
Suppose	our	mantissa	is	0101.	Adding	the	decimal	point	gives	0.101.	Adding	the	value	of	
bits	gives	2-1	+	2-3	which	is	5/8.	So,	5/8	is	the	value	of	the	mantissa.	
	
Let	us	now	say	the	value	of	the	exponent	is	0101.	This	is	5	in	denary.	So,	the	we	shift	the	
mantissa	by	5	 to	 the	 left,	or	alternatively	 the	decimal	point,	or	 radix	point	 in	computer	
science,	to	the	right	by	5.	This	gives	us	010100.	The	value	of	the	number	is	20.			
	
	
o Note	that	the	mantissa	and	exponent	are	stored	in	two’s	complement	binary,	so	if	the	

exponent	is	negative	then	the	mantissa	is	shifted	to	the	right.			
	
o 	
Example	
Suppose	our	mantissa	is	0101.	Adding	the	decimal	point	gives	0.101.	Adding	the	value	of	
bits	gives	2-1	+	2-3	which	is	5/8.	So,	5/8	is	the	value	of	the	mantissa.	
	
Let	us	now	say	the	value	of	the	exponent	is	1101.	This	is	-3	in	denary.	So,	the	we	shift	the	
mantissa	by	3	to	the	right,	or	alternatively	the	decimal	point,	or	radix	point	in	computer	
science,	to	the	left	by	3.	This	gives	us	0.000101.	The	value	of	the	number	is	2-4	+	2-6	which	
is	5/64.			

	
o The	value	of	the	mantissa	is	a	binary	number,	but	where	the	decimal	point	is	after	the	first	

bit.	For	instance,	if	the	mantissa	is	0101,	then	it	actually	represents	0.101.	The	values	of	
the	bits	after	the	decimal	point,	follow	the	same	pattern	as	the	values	of	the	bits	before	
the	decimal	point.	So,	the	value	of	the	first	bit	to	the	left	of	the	decimal	point	is	20,	so	the	
value	of	the	first	bit	to	the	right	is	2-1,	i.e.	½.		

	
o The	exponent	is	just	a	regular	two’s	complement	
	
	
Example	
Let	us	use	a	4-bit	mantissa	and	a	4-bit	 exponent.	 Let	us	use	 two’s	 complement	 for	 the	
mantissa	and	the	exponent.	Let	the	mantissa	be	0100.	The	only	bit	that	is	1	is	the	second	
from	the	left.	This	is	worth	2-1,	i.e.	a	½.	Let	us	say	the	exponent	is	0010.	This	means	it	is	2.	
We	do	½	*	22,	to	obtain	2.	
	
Example	
Let	us	use	a	4-bit	mantissa	and	a	4-bit	 exponent.	 Let	us	use	 two’s	 complement	 for	 the	
mantissa	and	the	exponent.	Let	the	mantissa	be	0100.	The	only	bit	that	is	1	is	the	second	
from	the	left.	This	is	worth	2-1,	i.e.	a	½.	Let	us	say	the	exponent	is	1010.	This	means	it	is	-6.	
We	do	½	*	2-6,	to	obtain	1/64.		
	
o A	 normalised	 floating-point	 number	 should	 begin	with	 two	 different	 digits.	 A	 positive	

number	should	begin	with	01,	and	a	negative	number	should	begin	with	10.	
	
Example	
Let	us	use	a	4-bit	mantissa	and	a	4-bit	 exponent.	 Let	us	use	 two’s	 complement	 for	 the	
mantissa	and	the	exponent.	Let	the	mantissa	be	0010.	The	only	bit	that	is	1	is	the	third	from	
the	left.	This	is	worth	2-2,	i.e.	a	¼.	Let	us	say	the	exponent	is	1010.	This	means	it	is	-6.	We	
do	¼	*	2-6,	to	obtain	1/128.	Notice,	that	this	is	not	a	normalised	number	because	the	first	two	
digits	of	the	mantissa	are	the	same.	To	remedy	this,	we	shift	the	digits	of	the	mantissa	to	
the	left	by	1.	This	is	equivalent	to	multiplying	by	2.	So,	we	must	decrement	the	exponent	
by	 1,	which	 is	 the	 equivalent	 of	 dividing	 by	 2.	 So,	 the	 new	mantissa	 is	 0100.	 The	 new	
exponent	is	1001.	Notice	this	is	still	equivalent	to	1/128.	
	
Example	
Let	us	use	a	4-bit	mantissa	and	a	4-bit	 exponent.	 Let	us	use	 two’s	 complement	 for	 the	
mantissa	and	the	exponent.	Let	the	mantissa	be	1101.	This	is	equivalent	to	-3/8.	Let	us	say	
the	exponent	is	0101.	This	means	it	is	5.	We	do	-3/8	*	25,	to	obtain	-12.	Notice,	that	this	is	
not	a	normalised	number	because	 the	 first	 two	digits	of	 the	mantissa	are	 the	same.	To	
remedy	this,	we	shift	the	digits	of	the	mantissa	to	the	left	by	1.	By	we	want	to	preserve	the	
number	sign.	So,	we	don’t	modify	the	first	bit.	This	is	still	equivalent	to	multiplying	by	2.	
And,	we	must	decrement	the	exponent	by	1,	which	is	the	equivalent	of	dividing	by	2.	So,	
the	new	mantissa	is	1010.	The	new	exponent	is	0100.	Notice	this	is	still	equivalent	to	-12.	
	
o Adding	and	subtracting	floating	points	numbers	is	performed	by	making	the	exponent	the	

same.	Then	performing	normal	addition	and	subtraction.	

	
Example	
Let	us	add	0.5	and	6.	In	normalised	two’s	complement	floating-point	binary	with	6	bits	for	
the	mantissa	and	exponent	these	are:	
0.5	–	010000	000000	
6	–	011000	000011	
	
First	you	add	the	decimal	point	and	shift	the	numbers,	by	the	exponent.	So,	the	first	number	
stays	the	same	as	0.1,	and	the	second	number	becomes	0.11	*	23	=	0110.	Then	add	the	
numbers	0.1	+	0110	=	0110.1.		
	
Then	shift	the	decimal	point,	back	so	the	number	is	normalised,	so	you	have	0.1101.	So,	the	
mantissa	is	011010.	Since	you	shifted	it	by	3,	the	exponent	is	3,	i.e.	000011.	That	makes	6.5.	
	
o If	you	are	doing	this	with	a	two’s	complement	mantissa,	then	you	need	to	know	that	to	

convert	a	positive	two’s	complement	number	of	say	4	bits,	to	one	of	8	bits	you	simply	
make	the	leftmost	4	bits	0.	To	do	this	for	a	negative	two’s	complement	number,	you	may	
the	leftmost	4	bits	1.	

	
Example	
Let	us	add	-0.5	and	6.	In	normalised	two’s	complement	floating-point	binary	with	6	bits	for	
the	mantissa	and	exponent	these	are:	
-0.5	–	100000	111111	
6	–	011000	000011	
	
First	you	add	the	decimal	point	and	shift	the	numbers,	by	the	exponent.	So,	the	first	number	
is	shifted	to	right	to	be	1.1,	and	the	second	number	becomes	0.11	*	23	=	0110.	Then	add	
the	numbers	1.1	+	0110.	This	gives	you	1111.1	+	110	=	10101.1.	An	overflow	appeared	to	
have	occurred,	so	you	ignore	the	last	bit,	so	you	have	0101.1.	Then	shift	the	decimal	point,	
back	so	the	number	is	normalised,	so	you	have	0.1011.	So,	the	mantissa	is	010110.	Since	
you	shifted	it	by	3,	the	exponent	is	3,	i.e.	000011.	That	makes	5.5.	
	
Bitwise	Manipulation	

o A	bitwise	AND,	OR	or	XOR	is	where	the	appropriate	logic	gates	are	applied	to	each	
corresponding	bit	on	a	pair	of	numbers.	

o Logical	shifts	shift	the	number	left	or	right	and	make	the	vacated	bit	0.	
o Arithmetic	shifts	shift	the	number	left	or	right	but	keep	the	sign	bit	the	same.	When	

shifting	right,	this	is	done	by	moving	a	1	into	the	vacated	bit	if	the	sign	bit	was	1.	If	
shifting	left,	then	the	shift	ignores	the	sign	bit.	

o Circular	shifts	shift	the	bits	in	a	circle.	
	
Character	Set	

o Character	Set	-	The	symbols	a	computer	system	can	recognise.	Normally	corresponds	
to	symbols	on	a	keyboard.	Each	symbol	has	a	numeric	value.	Examples	include	ASCII	
and	Unicode.	

	

1.4.2	Data	Structures	
Array	–	A	static	data	structure	consisting	of	a	list	of	values,	of	the	same	data	type,	stored	
contiguously	in	a	memory	location	accessible	from	a	single	identifier	with	an	index.	
	
Linked	List	–	A	dynamic	data	structure	consisting	of	nodes	which	consist	of	data	and	a	
pointer	to	the	next	node.	
	
Advantages	of	Arrays	 Advantages	of	Linked	Lists	
Data	is	stored	contiguously,	so	access	times	
are	constant	i.e.	arrays	allow	random	access	

Linked	lists	are	dynamic	data	structures,	so	
as	many	items	as	necessary	can	be	added	

Less	overhead	as	no	pointers	stored	 Easier	 to	 move	 items	 around	 and	 delete	
items,	as	only	pointers,	need	to	be	changed	

	 Merging	 two	 linked	 lists	 is	 easier,	 as	 the	
pointer	 from	 the	 final	node	of	 the	 first	 list	
just	needs	to	be	set	to	the	first	node	of	the	
second.	

	
Record	–	A	collection	of	named	fields,	which	may	be	of	different	data	types,	that	are	stored	
in	a	memory	location	together	under	a	single	identifier.	To	access	an	individual	field,	the	
record	identifier	and	the	field	name	are	used	in	conjunction.	
	
Tuple	–	A	tuple	is	an	immutable	collection	of	values,	which	may	of	different	data	types,	
stored	under	a	single	identifier.	To	access	an	individual	field,	an	index	is	used.	
	
Queue	-	A	first-in-first-out	(FIFO)	data	structure,	where	the	first	item	to	be	“enqueued”	
(added	to	the	queue)	is	the	first	item	to	be	“dequeued”	(removed	from	the	queue).	
	
Stack	-	A	last-in-first-out	(LIFO)	data	structure,	where	the	last	item	to	be	“pushed”	(added	to	
the	stack)	is	the	first	item	to	be	“popped”	(removed	from	the	stack).	
	
A	stack	has	a	pointer	to	the	last	item,	a	queue	has	a	pointer	to	the	first	and	the	last	item.	
	
Queues	and	stacks	can	be	of	a	fixed	capacity,	i.e.	static,	or	of	a	variable-length,	i.e.	dynamic.	
	
Graph	–	A	graph	is	a	data	structure	consisting	of	a	set	of	vertices	(or	nodes)	connected	by	
edges	(or	arcs).	
	
Undirected	Graph	–	A	graph	where	all	edges	are	bidirectional.	
Directed	Graph	–	A	graph	where	all	edges	are	one-way.	
	
Tree	-		A	data	structure	made	from	nodes	which	can	have	a	number	of	children,	which	are	
also	nodes.	A	node	can	only	have	on	parent,	except	for	the	root	node	which	has	no	parent.	
	
Binary	Search	Tree	–	A	tree	where	each	node	can	have	a	maximum	of	two	children,	where	
nodes	are	stored	in	an	order,	by	having	the	nodes	in	the	left	subtree	be	less	than	a	given	
node,	and	the	nodes	in	the	right	subtree	greater	than.	
	

Pre-order	traversal	–	The	current	node	is	visited	before	its	left	subtree	and	its	right	subtree	
are	recursively	traversed.	
	
In-order	traversal	–	The	left	subtree	of	a	node	is	recursively	traversed,	before	the	current	
node	is	visited,	and	then	the	right	subtree	is	recursively	traversed.	
	
Post-order	traversal	–	The	left	subtree	and	right	subtree	of	a	node	is	recursively	traversed,	
before	the	current	node	is	visited.	
	
Hash	Table	–	A	data	structure	where	items	of	data	are	accessed	by	keys.	The	data	is	stored	in	
buckets.	 To	 decide	which	 bucket	 should	 hold	 a	 piece	 of	 data	 identified	 by	 a	 given	 key,	 a	
hashing	algorithm	 is	applied	 to	 the	key	 to	get	 the	 index	of	a	particular	bucket.	A	collision	
occurs	if	two	keys	are	to	be	stored	in	the	same	bucket.	One	way	of	resolving	this	is	storing	
linked	lists	in	each	of	the	buckets.	
	 	
Applications	of	Queues	

• Storing	jobs	to	be	processed	by	the	CPU	
• Storing	requests	to	a	website	or	a	database	to	be	processed	

	
Applications	of	Stacks	

• Calling	functions	(arguments	stored	in	a	stack)		
• Many	programming	languages	use	stacks	to	parse	code	when	compiling/interpreting	

	
1.4.3	Boolean	Algebra	
Operation	 Symbol	 Gate	

AND	 A	�	B	

	

OR	 A	�	B	

	

NOT	 ¬ A

	

XOR	 A	�	B	

	
	

You	also	need	to	be	aware	that:	A	≡	B	means	that	the	Boolean	expression	A	is	equivalent	to	
the	Boolean	expression	to	B.	
	
Simplifying	Boolean	Expressions	

Basic	Laws	

A	�	1	≡	1	
A	�	0	≡	A	
A	�	1	≡	A	
A	�	0	≡	0	

Double	Negation	Law	 ¬¬ A ≡	A	

Idempotent	Laws	 A	�	A	≡	A
A	�	A	≡	A	

Complement	Laws	 A	�	¬A	≡	1	
A	�	¬A	≡	0	

Distributive	Laws	
A	�	(B	�	C)	≡	(A	�	B)	�	(A	��C)	
A	�	(B	�	C)	≡	(A	�	B)	�	(A	��C)	

De	Morgan’s	Laws	
¬(A	��B)		≡	(¬A	��¬B)	
¬(A	��B)		≡	(¬A	��¬B)	

	
AND	and	OR	are	also	commutative	and	associative	operations.	
	
Karnaugh	Maps	
Karnaugh	Maps	are	an	alternative	way	of	simplifying	Boolean	expressions.	This	 is	done	by	
creating	a	table,	where	the	rows	are	one	variable	and	the	columns	are	another	variable.	If	
doing	Karnaugh	maps	on	 three-variable,	 four-variable	problems,	or	even	bigger	problems,	
then	 one	 writes	 multiple	 variables	 as	 the	 columns/rows.	 For	 instance,	 if	 A,	 B	 and	 C	 are	
variables,	 then	A	might	be	the	rows,	and	BC	might	be	the	columns.	Each	row	and	column	
represents	a	certain	assignment	of	variables	of	a	subset	of	the	variables.	Each	cell	represents	
a	complete	assignment	of	variables,	and	stores	what	the	expression	would	evaluate	to	in	that	
case.	 It	 is	essential	 that	the	variable	assignments	that	the	rows	or	columns	represent	only	
differ	by	1	bit.	Then	one	selects	the	biggest	groups	of	1,	2,	4,	8,	etc.	ones	that	form	a	rectangle.	
The	rectangle	may	wrap	around	the	edges.	Then	one	finds	the	expression	that	make	these	
groups	1	and	combines	then	using	OR.	
	
Adders	and	D-Type	Flip	Flops	

o Half	Adder	–	A	half	adder	takes	the	input	of	two	bits	and	gives	a	two-bit	output,	
consisting	of	a	sum	and	a	carry.	

o Full	Adder	–	A	full	adder	is	made	from	two	half	adders	to	add	three	bits,	where	one	
of	the	bits	is	a	carry.	It	produces	a	two-bit	output.	

o To	construct	an	adder	capable	of	adding	two	n-bit	numbers,	simply	combine	n	full	
adders.	

o D-Type	Flip	Flop	–	A	flip	flop	is	a	circuit	that	can	store	one	bit.	It	has	two	inputs,	a	
control	input	and	a	clock	signal.	A	D-type	flip	flop	is	a	positive	edge-triggered	flip-
flop;	this	means	that	it	takes	the	values	whenever	the	clock	signal	changes	from	0	to	
1,	and	this	is	the	only	time	it	does	this.	

	

1.5 Legal,	moral	and	ethical	issues	
1.5.1	Computing	Related	Legislation	
Data	Protection	Act	1999:	

• Data	must	be	processed	fairly	and	lawfully	
• Data	must	be	adequate,	relevant	and	not	excessive	
• Data	must	be	accurate	and	kept	up	to	date	
• Data	must	not	be	kept	for	longer	than	necessary	
• Data	must	only	be	used	for	the	purpose	for	which	it	was	collected	
• Data	must	be	kept	secure	
• Data	must	be	handled	in	accordance	with	people’s	rights	
• Data	must	not	be	transferred	to	countries	outside	the	EU	without	adequate	

protection	
• All	data	users	must	register	with	the	Information	Commissioner	

	
		
Computer	Misuse	Act	1990	created	four	new	offences:	

• Unauthorised	access	to	computer	systems	
• Unauthorised	access	with	intent	to	commit	or	aid	crime	
• Unauthorised	modification	of	computer	systems	
• Making,	supplying	or	obtaining	anything	that	can	be	used	in	the	above	offences.	

	
Copyright,	Designs	and	Patents	Act	1988	makes	it	illegal	to:	

• Copy	works	of	intellectual	property	(software,	music)	electronically	to	redistribute	
• Renting	works	of	intellectual	property	without	the	permission	of	the	copyright	

holder	
• Putting	intellectual	property	on	a	shared	network	without	the	permission	of	the	

copyright	holder	
	
Regulation	of	Investigatory	Powers	Act	2000	allows:	

• Certain	public	bodies	to	monitor	people’s	Internet	activities	
• Certain	public	bodies	to	demand	people	hand	over	encryption	keys	
• Certain	public	bodies	to	demand	ISPs	hand	over	customer	information	and	to	install	

surveillance	equipment	
	
Exam	Technique	
You	are	likely	to	be	asked	questions	on	laws	in	9	mark	questions.	In	9	mark	questions,	
there	are	4	marks	for	knowledge,	2	marks	for	application	and	3	for	evaluation.	So,	if	asked	
about	people	stealing	a	film	from	a	CGI	company’s	corporate	network,	you	should	use	the	
following	structure:	

o Knowledge:	Unauthorised	access	to	computer	systems	is	illegal	under	the	
Computer	Misuse	Act.	

o Knowledge:	It	is	an	additional	offence	to	gain	unauthorised	access	with	the	
intention	of	committing	crime.	

o Application:	If	the	person	who	got	the	films,	hacked	the	company’s	corporate	
network	to	do	so,	then	they	will	be	in	breach	of	the	first	offence.		

o Evaluation:	This	is	relevant	only	if	the	person	who	obtained	them	had	to	gain	
unauthorised	access.	It	is	not	the	same	if	somebody	working	for	the	firm	leaked	it.	

	
	
1.5.2	Moral	and	ethical	issues	
Computers	in	the	workforce	has	led	to	many	low-skill	manufacturing	jobs	and	low-skill	service	
jobs	being	automated.	Firms	such	as	Google	and	Amazon	are	able	to	make	huge	amounts	of	
money,	while	employing	very	few	people.	
	
Automated	 decision	making	 is	where	 computer	make	 important,	 potentially	 life	 or	 death	
decisions.	For	instance,	a	self-driving	car	may	make	a	decision	that	kills	somebody,	or	makes	
a	decision	that	prioritises	the	life	of	a	group	of	people	over	one	person.	In	either	case,	there	
is	a	question	of	who	is	responsible	for	the	deaths.	The	programmer?	The	manufacturer?		
	
Artificial	 intelligence	systems	can	be	used	 in	different	scenarios.	For	 instance,	 they	can	be	
used	to	detect	credit	card	fraud,	or	predict	customer	shopping	to	order	goods	in	advance	or	
attempt	to	diagnose	patients	based	on	their	symptoms.	
	
The	environmental	considerations	of	computer	systems	include	that	technology	has	led	to	a	
massive	increase	in	electronic	waste	being	discarded	in	landfills.	This	is	especially	true	since	
phones	have	a	very	short	life	cycle.	
	
Examples	of	using	computers	to	monitor	behaviour	include	monitoring	employees’	internet	
activity,	monitoring	the	internet	activity	of	those	suspected	of	crime	and	tagging	criminals.	
	
Different	 governments	attempt	 to	 censor	 information.	 It	 could	be	 that	 this	 information	 is	
against	the	political	 line	of	the	government	 in	countries	such	as	China	and	North	Korea.	 It	
could	be	the	case	that	the	information	is	pornographic	or	pirated	content.	
	
Piracy	sites	such	as	Pirate	Bay	allow	people	to	access	films,	music,	etc.	for	free.	However,	this	
also	means	producers	of	content	such	as	films	and	music	do	not	receive	payment	for	their	
work.	If	done	on	a	wide	enough	scale,	this	can	make	producing	this	content	unprofitable.	The	
internet	also	allows	for	offensive	communications	e.g.	‘trolling’	and	cyber-bullying.	This	may	
be	 in	 the	 form	 of	 death	 threats	 of	misogynistic	 slurs.	 It	 is	 difficult	 for	 platforms	 such	 as	
Facebook	to	decide	what	should	be	removed.	
	
Ways	to	make	websites	accessible:	

o Making	the	website	friendly	to	screen	readers	
o Adding	alternative	text	to	images	
o Taking	into	account	colour	blindness	when	designing	colour	schemes	

2.1 Computational	Thinking	
2.1.1	Thinking	Abstractly	
	
Why	is	abstraction	necessary?	

o Remove	things	that	are	unnecessary		

o They	may	require	additional	programming	effort	
o They	may	detract	from	the	purpose	of	the	program	
o Save	computational	resources	e.g.	memory	

	
2.1.2	Thinking	Ahead	
Caching	
Caching	 is	where	 frequently	performed	 computations	or	data	 that	has	 to	be	 requested	 is	
stored,	 to	 reduce	 time	 in	 the	 future.	 For	 instance,	 your	 web	 browser	 is	 likely	 to	 cache	
frequently	browsed	web	pages.	The	advantage	is	that	it	reduces	time	for	a	program	to	run.	
The	disadvantage	 is	 that	 it	 increases	 the	amount	of	 storage	used.	You	can	 think	of	 it	as	a	
space-time	tradeoff.	
	
Reusable	Components	
This	is	where	a	program	is	made	from	a	number	of	smaller	independent	components,	that	
can	be	reused.	This	is	done	as	reusable	components	might	be	useful	in	the	future.	This	will	
save	programmer	time.	
	

2.2 Problem	Solving	
2.2.1	Programming	techniques	
	
Sequence	–	Where	one	instruction	is	executed,	followed	by	another.	
	
Selection	–	Where	a	piece	of	code	is	only	executed	if	a	certain	condition	is	met.	
	
Iteration	–	Where	a	piece	of	code	is	executed	repeatedly	until	a	certain	condition	is	met,	or	
for	a	set	number	of	times.	
	
Variable	–	An	identifier	associated	with	a	memory	location	used	to	store	data	and	whose	
contents	can	be	changed	at	runtime.	
	
Global	Variable	–	A	variable	that	can	be	accessed	from	anywhere	in	a	program.	
	
Local	Variable	–	A	variable	which	can	only	be	accessed	from	the	construct	it	was	defined	in.	
	
Constant	–	An	identifier	associated	with	a	value	that	cannot	be	changed	during	a	program’s	
execution.	
	
Array	–	A	static	data	structure	consisting	of	a	list	of	values	stored	contiguously	in	a	memory	
location	accessible	from	a	single	identifier	with	an	index.	
	
Procedure	–	A	named	subsection	of	a	program	that	performs	a	specific	task	but	does	not	
necessarily	return	a	function.	
	
Function	–	A	named	subsection	of	a	program	that	performs	a	specific	task	and	returns	
value.	

	
Pass	by	value	–	This	is	where	a	copy	of	the	data	passed	to	a	function	is	passed	as	a	
parameter.	
	
Pass	by	reference	–	This	is	where	a	memory	address	to	a	piece	of	data	to	a	function	is	
passed	as	a	parameter.	
	
IDE	–	A	single	program	used	to	develop	programs	made	from	a	number	of	components	e.g.	
an	editor,	a	compiler,	a	debugger,	etc.		
	

2.3 Algorithms	
	
2.3.1	Algorithms	
	
Big	O	Notation	

!(1)	 Constant	Time	
!(lg ')	 Logarithmic	Time	
!(')	 Linear	time	
!('()	 Polynomial	time,	where)	is	a	constant.	

!()*)	usually	!(2*)	 Exponential	time,	where)	is	a	constant.	
	
When	we	say	an	algorithm	take	!(, '),	what	we	are	strictly	saying	is	that	an	algorithm’s	
maximum	running	time	(that	it	could	possible	take)	as	',	which	is	the	input	size	e.g.	the	length	
of	an	array,	varies	is	proportional	to	, ' .	Big	O	Notation	provides	an	upper	bound.		
	
Intractable	Problem	
A	problem	is	intractable	is	if	it	can	be	solved	in	theory,	but	in	practice	it	cannot	be	solved.	
Normally,	computer	scientists	saying	that	a	problem	is	intractable	if	it	takes	an	exponential	
time,	as	a	function	of	its	input.	This	may	seem	like	a	very	rough	definition,	but	it	makes	a	lot	
of	sense.	Imagine	a	problem	takes	!(2*),	and	you	wanted	to	solve	it.	Suppose	with	your	
current	computer	you	could	solve	for	when	' = 5,	for	you	to	be	able	to	solve	' = 6	in	the	
same	time,	your	computer	will	have	to	twice	as	fast.	To	solve	' = 7,	it	will	have	to	be	four	
times	as	fast.	Even	if	computers	doubled	in	speed	every	year,	in	a	100	years	time	you	would	
only	be	able	to	solve	' = 105.		
	
Sorting	Algorithms	
Bubble	Sort	
procedure	bubbleSort(input)	
		for	i	=	0	to	(input.length	–	2)	
					for	j	=	0	to	(input.length	–	2	–	i)	
							if	input[j]	>	input[j+1]	then	
										//	Swap	input[j]	and	input[j	+	1]	
										a	=	input[j	+	1]	
										input[j	+	1]	=	input[j]	

										input[j]	=	a	
							endif	
					next	j	
		next	i	
endprocedure	
	
Insertion	Sort	
procedure	insertionSort(input)	
		for	i	=	1	to	(input.length	–	1)	
				key	=	input[i]	
				while	i	>	0	&&	input[i	–	1]	>	key	
						input[i]	=	input[i	–	1]	
						i	=	i	-	1	
				endwhile	
				input[i]	=	key	
		next	i	
endprocedure	
	
The	merge	sort	algorithm	below	can	actually	be	simplified	with	clever	Boolean	algebra	but	it	
is	simpler	to	understand	like	this.	
	
Merge	Sort	
//	This	methods	merges	the	two	sublists	input[start..midpoint]		
//	and	input[midpoint	+	1..end]	
procedure	merge(input,	start,	midpoint,	end)	
		array	workingMemory[end	–	start	+	1]	
		positionA	=	start	//	This	is	the	position	into	the	first	list	
		positionB	=	midpoint	+	1	//	This	is	the	position	into	the	second	list			
		for	i	=	0	to	(end	–	start	+	1):	
				if	positionA	>	midpoint	then	
						workingMemory[i]	=	input[positionB]	
						positionB	=	positionB	+	1	
				else	if	positionB	>	end	then	
						workingMemory[i]	=	input[positionA]	
						positionA	=	positionA	+	1	
				else	
							if	input[positionA]	<	input[positionB]	then	
									workingMemory[i]	=	input[positionA]	
									positionA	=	positionA	+	1	
							else	
									workingMemory[i]	=	input[positionB]	
									positionB	=	positionB	+	1	
							endif	
				endif	
		next	i	
		for	i	=	0	to	(end	–	start	+	1):	
				input[i]	=	workingMemory[i]	

		next	i	
endprocedure	
	
procedure	mergesort(input,	start,	end)	
		if	start	<	end	then	
					//	Integer	Division	
				midpoint	=	(start	+	end)	/	2	
				mergeSort(input,	start,	midpoint)	
				mergeSort(input,	midpoint	+	1,	end)	
				merge(input,	start,	midpoint,	end)	
		endif	
endprocedure	
	
Quick	Sort	
//	This	algorithms	splits	the	list	into	two	sublists.	
//	One	which	is	smaller	than	the	pivot	
//	Another	that	is	larger	than	the	pivot	
//	The	algorithm	returns	the	position	of	the	pivot	
function	partition(input,	start,	end)	
		k	=	start	–	1	
		//	The	pivot	is	always	taken	to	be	the	item	at	the	end	
		pivot	=	input[end]	
		//	The	algorithm	works	by	splitting	the	input,	into	three	sublists	
		//	First	the	section	of	the	list	that	is	smaller	than	the	pivot	
		//	This	is	input[start..k]	
		//	Since	k	initially	equals	start	–	1,	this	section	is	empty	
		//	Then	you	have	input[k+1..i]	
		//	This	is	the	section	which	is	greater	than	the	pivot	
		//	Then	you	have	input[i..end]	which	is	the	sublist	yet	to	be	processed	
		//	Eventually	input[i..end]	will	be	empty,	so	there	will	only	be	two	sublists.	
		for	i	=	start	to	end	–	1	
			if	input[i]	<=	pivot	then	
					k	=	k	+	1	
					//	Swap	input[k]	and	input[i]	
					a	=	input[k]	
					input[k]	=	input[i]	
					input[i]	=	a	
				endif	
		next	i	
		//	The	last	item	to	be	smaller	than	or	equal	to	the	pivot	is	the	pivot	
		//	So,	k	points	to	the	location	of	the	pivot	
		return	k	
endfunction	
	
procedure	quicksort(input,	start,	end)	
		if	start	<	end	then	
				pivot	=	partition(input,	start,	end)	

				quicksort(input,	start,	pivot	-	1)	
				quicksort(input,	pivot	+	1,	end)	
		endif	
endprocedure	
	
Binary	Search	
function	binarySearch(input,	search)	
		lower	=	0	
		upper	=	input.length	
		middle	=	(lower	+	upper)	/	2	
		while	lower	<=	upper	
				if	input[middle]	=	search	then	
						return	middle	
				else	if	input[middle]	<	search	then	
						upper	=	middle	+	1	
				else		
						lower	=	middle	–	1	
				endif	
		endwhile	
		return	-1	
endfunction	
	
Linear	Search	
function	linearSearch(input,	search)	
		for	i	=	0	to	input.length	
				if	input[i]	==	search	then	
						return	i	
				endif	
		next	i	
		return	-1	
endfunction	
	
This	is	just	one	way	of	doing	Dijkstra’s	Algorithm.	Note	I	find	the	shortest	distance	to	every	
node.	To	make	it	more	efficient,	you	can	take	an	additional	parameter	which	is	the	goal	
node	and	stop	once	you’ve	found	the	shortest	distance	to	the	goal	node.	
	
Dijkstra’s	Algorithm	
//	This	function	returns	a	hash	map	between	nodes	in	the	graph	and	the	
//	shortest	distance	from	the	startNode	
//	We	are	assuming	there	is	a	function	dist(a,	b)	which	gives	you	the	distance	between	
//	two	connected	nodes.	
function	dijkstra(startNode)		
		map	=	createHashMap()	
		notProcessed		=	createLinkedList()	
		processed	=	createLinkedList()			
		//	map	is	the	name	of	the	hash	map	we	will	be	compiling	during	this	algorithm	
		//	and	we	will	return.	

	
		//	notProcessed	is	the	list	of	nodes	that	we	have	not	found	the	shortest	distance	to	
		//	but	that	we	have	encountered	
		//	processed	is	the	list	of	nodes	that	we	have	found	the	shortest	distance	to	
	
		//	Initially,	map	will	only	store	the	shortest	distance	we	have	seen	so	far	
		//	Once	we	are	sure	it	is	the	shortest	distance	we	move	a	node	from	notProcessed	
		//	To	processed	
	
		//	Initially	we	have	only	encountered	the	start	node.	
		notProcessed.add(startNode)	
	
		//	Obviously	you	don’t	have	to	use	linked	lists	
		//	You	can	use	whatever	data	structure	floats	your	boat	
		//	But	it	has	to	be	a	dynamic	data	structure			
		//	We	do	not	stop	until	there	is	nothing	left	to	processed	
		while	!notProcessed.isEmpty()	
				//	First	we	find	the	node	in	notProcessed	with	the	shortest	distance	so	far	
				minIndex	=	0	
				minDistance	=	-1	
				for	i	=	0	to	notProcessed.getLength()	
						if	map.get(notProcessed.get(i))	<	minDistance	
								minIndex	=	i	
						endif	
				endfor	
					
				//	That	node	is	removed	from	notProcessed	
				node	=	notProcessed.get(i)	
				notProcessed.remove(node)	
			//	And	added	to	processed	
			processed.add(node)	
	
			//	Then	we	add	its	neighbours	to	notProcessed	
			//	Unless	they’re	already	in	notProcessed	or	processed	
			neighborus	=	node.getNeighbours()	
					
		for	i	=	0	to	neighbours.getLength()	
				x	=	neighbours.get(i)	
					if	!(processed.contains(x))	then	
								if	notProcessed.contains(x)	then	
										//	If	we	are	here	it	means	that	we	have	found	another	path	to	a	node		
										//	That	we	have	already	seen	
										//	this	might	be	the	shorter	path	than	already	has	been	found	
										if	map.get(x)	>	map.get(node)	+	dist(node,	x)	then	
													//	Update	the	distance	
													map.put(x,	map.get(node)	+	dist(node,	x))	
										endif	

								else	
										//	This	means	it	is	not	in	notProcessed	
										//	So	we	add	it	
										notProcessed.add(x)	
										map.set(x,	map.get(node)	+	dist(node,	x))	
								endif	
						endif	
				endfor	
			
		return	map	
endfunction	
	
Dijkstra’s	algorithm	will	always	find	the	shortest	distance	from	a	node	to	a	goal	node.	
However,	in	doing	so	it	checks	every	path.	The	A*	pathfinding	algorithm	finds	a	path	from	
one	node	to	a	goal	node,	but	guesses	i.e.	uses	a	heuristic	to	choose	where	to	search.	For	
instance,	the	heuristic	might	be	the	shortest	distance	between	the	current	node	and	the	
goal	node	(e.g.	using	Pythagoras’	theorem).	In	this	algorithm,	I	assume	there	is	a	heuristic	
algorithm	guess(current,	goal)	which	estimates	the	distances	between	current	and	goal.	
However,	the	A*	algorithm	will	always	find	a	path	if	one	exists.	My	implementation	of	the	
algorithm	does	not	reconstruct	the	path,	but	that	can	be	added	with	a	few	modifications.	
	
A*	Pathfinding	Algorithm	
//	This	functions	returns	0	if	it	has	found	a	path	
//	Otherwise	it	returns	0	
function	A*(startNode,	goalNode)		
		map	=	createHashMap()	
		notProcessed		=	createLinkedList()	
		processed	=	createLinkedList()			
		//	map	is	the	name	of	the	hash	map	we	will	be	compiling	during	this	algorithm	
		//	and	we	will	return.	
	
		//	notProcessed	is	the	list	of	nodes	that	we	have	not	processed	
		//	but	that	we	have	encountered	 	
		//	processed	is	the	list	of	nodes	that	we	have	processed	
	
		//	map	will	store	the	shortest	distance	to	a	node	that	we	have	seen	so	far	
	
		//	Initially	we	have	only	encountered	the	start	node.	
		notProcessed.add(startNode)	
	
while	!notProcessed.isEmpty()	
				//	Here	is	where	the	guessing	begins	
				//	We	choose	a	node	based	on	the	shortest	distance	we	have	seen	so	far	to	it	
				//	And	an	estimation	of	how	long	it	will	take	to	get	to	the	goal	node	
				minIndex	=	0	
				minDistance	=	-1	
				for	i	=	0	to	notProcessed.getLength()	

						if	map.get(notProcessed.get(i))	+	guess(notProcessed.get(i),	goalNode)	<	minDistance	
								minIndex	=	i	
						endif	
				endfor	
					
				//	That	node	is	removed	from	notProcessed	
				node	=	notProcessed.get(i)	
				notProcessed.remove(node)	
			//	And	added	to	processed	
			processed.add(node)	
	
			//	Then	we	add	its	neighbours	to	notProcessed	
			//	Unless	they’re	already	in	notProcessed	or	processed	
			neighborus	=	node.getNeighbours()	
					
		for	i	=	0	to	neighbours.getLength()	
				x	=	neighbours.get(i)	
				//	First	we	check	if	the	neighbour	is	the	goal	node	
				if	x	==	goalNode	then	
						//	We	did	it!	
						return	0	
				endif	
					if	!(processed.contains(x))	then	
								if	notProcessed.contains(x)	then	
										//	If	we	are	here	it	means	that	we	have	found	another	path	to	a	node		
										//	That	we	have	already	seen	
										//	this	might	be	the	shorter	path	than	already	has	been	found	
										if	map.get(x)	>	map.get(node)	+	dist(node,	x)	then	
													//	Update	the	distance	
													map.put(x,	map.get(node)	+	dist(node,	x))	
										endif	
								else	
										//	This	means	it	is	not	in	notProcessed	
										//	So	we	add	it	
										notProcessed.add(x)	
										map.set(x,	map.get(node)	+	dist(node,	x))	
								endif	
						endif	
				endfor	
			
		//	If	we	get	to	here	our	algorithm	has	failed	to	find	a	path	
		//	Which	means	a	path	doesn’t	exist	
		return	-1	
endfunction	
	

